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SUMMARY
Tumor evolution is driven by the progressive acquisition of genetic and epigenetic alterations that enable
uncontrolled growth and expansion to neighboring and distal tissues. The study of phylogenetic relation-
ships between cancer cells provides key insights into these processes. Here, we introduced an evolving
lineage-tracing system with a single-cell RNA-seq readout into a mouse model of Kras;Trp53(KP)-driven
lung adenocarcinoma and tracked tumor evolution from single-transformed cells to metastatic tumors at
unprecedented resolution. We found that the loss of the initial, stable alveolar-type2-like state was
accompanied by a transient increase in plasticity. This was followed by the adoption of distinct transcrip-
tional programs that enable rapid expansion and, ultimately, clonal sweep of stable subclones capable of
metastasizing. Finally, tumors develop through stereotypical evolutionary trajectories, and perturbing
additional tumor suppressors accelerates progression by creating novel trajectories. Our study elucidates
the hierarchical nature of tumor evolution and, more broadly, enables in-depth studies of tumor
progression.
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INTRODUCTION

Cancer is an evolutionary process characterized by the dynamic

interplay of cellular subpopulations, each driven by progressive

genetic and epigenetic changes (Nowell, 1976). Throughout

this process, cancer cells can acquire phenotypic heterogeneity

that increases fitness by enabling them to grow more aggres-

sively, invade neighboring tissues, evade the immune system

and therapeutic challenges, andmetastasize to distant sites (Ha-

nahan andWeinberg, 2011; Vogelstein et al., 2013; McGranahan

and Swanton, 2017). Interrogating the molecular bases of sub-

clonal selection and metastatic seeding, the origins of and tran-

sitions between transcriptional states as well as the identities

and genetic determinants of evolutionary paths that tumors un-

dergo will not only illuminate fundamental principles governing

tumor evolution but also have immediate clinical implications

(Black and McGranahan, 2021). To fully understand these pro-

cesses, it is essential to study the evolutionary dynamics giving

rise to a tumor in its native setting, preferably in experimentally

defined conditions (Amirouchene-Angelozzi et al., 2017).

Tumor phylogenetic analysis, the study of lineage relation-

ships among the cells comprising the tumor population de-

scended from a single-transformed progenitor, can provide

key insights into the dynamics of tumor progression. Classically,

phylogenies have been constructed using naturally occurring so-

matic genomic variations (mutations or copy number variations

[CNVs]) as natural lineage tracers. These efforts have illuminated

several key evolutionary processes underpinning tumor devel-

opment (Vogelstein et al., 1988; Sjöblom et al., 2006; Schwartz

and Schäffer, 2017; Ludwig et al., 2019; Gao et al., 2021; Ger-

stung et al., 2020; Sottoriva et al., 2015), including the acquisition

of critical subclonal genetic or epigenetic changes (Gerlinger

et al., 2014; Williams et al., 2018; Neftel et al., 2019), the timing

and routes of metastatic dissemination (Turajlic and Swanton,

2016; Hu and Curtis, 2020), and the development of therapeutic

resistance (Maynard et al., 2020; Powles et al., 2021; Abbosh

et al., 2017; Kim et al., 2018; Salehi et al., 2021). Although prog-

ress has been enabled by innovative computational methods

(Potter et al., 2013; El-Kebir et al., 2016; Malikic et al., 2019; Sa-

tas et al., 2020), these studies are limited by the inherent variation

in naturally occurring somatic mutations, incomplete or low cell

sampling, and other confounding variables (e.g. environmental

exposures and genetic background) and are not amenable to

further perturbations or functional studies.

Genetically engineered mouse models (GEMMs) of cancer

provide a critical tool for modeling tumor progression as they

allow one to study tumor evolution in its nativemicroenvironment

and experimentally defined conditions (Hann and Balmain, 2001;

Frese and Tuveson, 2007). The KrasLSL-G12D/+; Trp53fl/fl (KP)

model of lung adenocarcinoma allows tumor initiation via viral

delivery of Cre recombinase to a small number of lung epithelial

cells, leading to activation of oncogenic Kras, homozygous dele-

tion of the p53 tumor suppressor gene, and clonal tumor

outgrowth. It faithfully models the major steps of tumor evolution

from nascent cell transformation to aggressive metastasis, reca-

pitulating human lung adenocarcinoma progression both molec-

ularly and histopathologically (Jackson et al., 2001; Jackson

et al., 2005; Winslow et al., 2011). Moreover, recent work has re-
1906 Cell 185, 1905–1923, May 26, 2022
vealed that substantial transcriptomic and epigenomic hetero-

geneities emerge during tumor evolution in this model (Marja-

novic et al., 2020; LaFave et al., 2020), consistent with human

tumors (Laughney et al., 2020). The tractability of this model pro-

vides an appealing opportunity to probe several unanswered but

crucial questions regarding how tumors evolve including the

following: how a single-transformed cell expands into an aggres-

sive tumor, how various cell states relate to one another and

contribute to tumor evolution, how different transcriptional

states transition between each other, and how metastases and

primary tumors are evolutionarily related.

Approaches that permit simultaneous measurements of cell

lineage and cell state information have the potential to provide

unique insights into these questions (Tammela and Sage,

2020; Wagner and Klein, 2020; Stadler et al., 2021). Although

previous studies have used synthetic ‘‘static’’ barcoding tech-

niques to study clonal relationships (Bhang et al., 2015; Livet

et al., 2007; Lan et al., 2017; Pei et al., 2017; Driessens et al.,

2012; Schepers et al., 2012), studying the evolution of individual

tumors at subclonal resolution remains challenging. This limita-

tion is in large part due to the low mutational burden in GEMM

tumors, thus offering little lineage resolution within individual tu-

mors (Westcott et al., 2015; McFadden et al., 2016). The recent

development of high-resolution CRISPR/Cas9-evolving lineage

tracing paired with single-cell RNA-seq (scRNA-seq) readouts

overcomes these limitations. Generally, such continuous line-

age-tracing approaches leverage Cas9-induced DNA cleavage

and subsequent repair to progressively generate heritable inser-

tions and deletions (‘‘indels’’) at synthetic DNA target sites engi-

neered into the genomes of living cells (McKenna et al., 2016;

Frieda et al., 2017; Kalhor et al., 2018; Chan et al., 2019;

McKenna and Gagnon, 2019). Importantly, these DNA target

sites are transcribed into polyadenylated mRNAs, allowing

them to be captured and profiled along with all other cellular

mRNAs using scRNA-seq. In doing so, this approach makes it

possible to directly link the current cell state (as measured by

scRNA-seq) with its inferred or putative past lineage history (as

captured by the lineage tracer) and to do so on a massive scale

(Alemany et al., 2018; Spanjaard et al., 2018; Raj et al., 2018;

Chan et al., 2019; Bowling et al., 2020). Recently, this technology

has been introduced into cancer cell lines before transplanting

them into mice to track metastatic behaviors in vivo (Simeonov

et al., 2021; Quinn et al., 2021; Zhang et al., 2021).

Here, we have developed an autochthonous ‘‘KP-Tracer’’

mouse model that allows us to simultaneously initiate an engi-

neered lineage-tracing system and induce Kras and Trp53 onco-

genic mutations in individual lung epithelial cells. This enabled

continuous and comprehensive monitoring of the processes by

which a single-cell harboring oncogenic mutations evolves into

an aggressive tumor. The resulting tumor phylogenies reveal

that rare subclones drive tumor expansion by adopting distinct

fitness-associated transcriptional programs. By integrating line-

age and transcriptome data, we uncovered changes in cancer

cell plasticity and parallel evolutionary paths of tumor evolution

in this model, which could be profoundly altered by perturbing

additional tumor suppressor genes commonly mutated in

human tumors. We have also identified the subclonal origins,

spatial locations, and cellular states of metastatic progression.
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Collectively, this technology allowed us to reconstruct the life-

span of a tumor from a single-transformed cell to a complex

and aggressive tumor population at unprecedented scale and

resolution.

RESULTS

KP-Tracer mouse enables continuous and high-
resolution lineage tracing of tumor initiation and
progression
To generate high-resolution tumor phylogenies, we developed a

lineage-tracing competent mouse model of lung adenocarci-

noma capable of months-long continuous cell lineage tracing

(Figure 1A). Specifically, we engineered mouse embryonic

stem cells (mESCs) harboring the conditional alleles

KrasLSL-G12D/+ and Trp53fl/fl (KP) to additionally encode condi-

tional SpCas9 and mNeonGreen fluorophore at the Rosa26

locus; Rosa26LSL-Cas9-P2A-mNeonGreen (KPCas9). We then engi-

neered thesemESCswith a refined version of our lineage-tracing

technology (Chan et al., 2019; Quinn et al., 2021). Specifically,

we introduced a library of piggyBac transposon-based lineage-

tracing vector containing two essential components: first, target

sites for lineage tracing, consisting of three cut sites positioned

within the 30 UTR of a mCherry fluorescent reporter and a

14-base-pair randomer integration barcode (‘‘intBC’’) to distin-

guish individual copies; second, three constitutively expressed

single-guide RNAs (sgRNAs) for directing Cas9 to each of the

three individual cut sites within the target sites, thereby gener-

ating indels for lineage tracing (Figure S1A). A key enabling

feature is that the speed of tracing (i.e., indel generation kinetics)

can be tuned to match the tumor developmental timescale by

engineering mismatches between sgRNAs and target sites

(Chan et al., 2019; Quinn et al., 2021). We isolated engineered

mESC clones by fluorescence-activated cell sorting (FACS)

based on high mCherry expression (Figures S1B and S1C) and

selected cloneswith 10–30 integrated target sites by quantitative

PCR (qPCR) and DNA sequencing (Figures S1D and S1E).

Finally, we generated chimeric mice (hereafter ‘‘KP-Tracer’’

mice) from five validated mESC clones to ensure that evolu-

tionary behavior was not idiosyncratic to a specific clone (Zhou

et al., 2010; Premsrirut et al., 2011).

In KP-Tracermice, intratracheal administration of lentivirus ex-

pressing Cre recombinase simultaneously initiates lung tumors

by activating conditional oncogenic alleles and lineage tracing

by inducing the expression of Cas9 that, together with the ex-

pressed sgRNAs, causes accumulation of indels in the target

sites (DuPage et al., 2009). Previous static lineage tracing

studies, using lentiviral barcoding or multicolor reporters, have

shown that KP tumors induced with this strategy are clonal

and homogenously contain oncogenic Kras;p53 mutations

(Chuang et al., 2017; Caswell et al., 2014). To validate tumor

clonality, we induced tumors with a barcoded lentiviral-Cre

construct (lenti-Cre-BC) providing a unique clonal barcode for

each tumor (Adamson et al., 2016).

Individual tumors with strong mCherry and mNeonGreen

expression (indicating target site and Cre, respectively) and clear

boundary separation from adjacent tumors were harvested

5–6 months after tumor initiation, microdissected, and dissoci-
ated completely to ensure unbiased cell sampling (Figure 1B;

Table S1). After being labeled with Multiplexing Using Lipid-

Tagged Indices for scRNA-seq (MULTI-seq) (McGinnis et al.,

2019) and purified by FACS (STAR Methods), cancer cells

were subjected to scRNA-seq analysis to measure cell state,

lineage, sample identity, and tumor clonality. After integrating

all four datasets for each cell (Figure 1C; STAR Methods), we

proceeded with paired lineage and transcriptome measure-

ments for 40,386 cells with a median of 9,680 UMIs and 2,877

genes detected across 35 tumors (29 primary tumors and 6 me-

tastases; a median of 511 cells were detected per primary tu-

mor). Importantly, target sites were consistently expressed

across tumors (Figures 1D, S1F, and S1G).

After preprocessing target site data based on lineage-tracing

sequencing quality control and ensuring tumor clonality with

lenti-Cre-BC information (Figure 1C; STAR Methods), we recon-

structed phylogenies for each tumor with Cassiopeia (Jones

et al., 2020). Figure 1E displays the inferred phylogeny and its

corresponding indel status (summarized in an ‘‘allele heatmap’’)

of a single-representative tumor, consisting of 772 cells. The re-

sulting tree revealed a rich subclonal structure and deep lineage

relationships, with a median depth of 12 and a maximum depth

of 15. As a validation of the integrity of our lineage reconstruc-

tion, we observed strong correlations between phylogenetic

and allelic distances across our trees (Figure 1F; Table S1).

With these high-resolution tumor phylogenies, we next turned

to studying the relationship between subclonal dynamics and

cellular state as determined by gene expression.

Rare subclones expand during tumor progression,
marked by increased DNA copy number variation,
cell-cycle score, and fitness score
A key question in tumor evolution is how subclonal selection,

based on the acquisition of growth-promoting genetic or epige-

netic changes, and the resulting population dynamics lead to the

expansion of aggressive subclones relative to other parts of the

same tumor (Nowell, 1976; McGranahan and Swanton, 2017;

Davis et al., 2017; Sottoriva et al., 2015). To examine the subclo-

nal dynamics in KP tumors, we adapted a statistical test that

compares the relative size of each subclone with what would

be expected in a ‘‘neutral’’ model of evolution where no subclone

is under selection (STAR Methods (Griffiths and Tavaré, 1998;

Speidel et al., 2019)). Using this method on a high-quality subset

(21/29) of primary tumors (Figure S1H; STARMethods), we found

examples of tumors that appeared to be neutrally evolving (i.e.,

with no evidence for positive selection) and tumors with sub-

clones showing clear signs of positive selection (Figure 2A).

Tumors predominantly had one or sometimes two subclones

undergoing expansion, and across tumors, there was a broad

distribution in the proportion of cells within expansions (Fig-

ure 2B). The proportion of expanding cells in each tumor was

poorly explained by individual technical covariates, including

the age of the tumor (R2 = 0.25 ± 0.14), the depth of the tumor

phylogeny (R2 = 0.23 ± 0.15), the number of cells in the tumor

(R2 = 0.09± 0.07), and the proportion of unique cell lineage states

(R2 = 0.28 ± 0.15, Figures S2A–S2D), although an additive linear

model with all of these covariates was a stronger predictor

(R2 = 0.52).
Cell 185, 1905–1923, May 26, 2022 1907
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Figure 1. KP-Tracer mouse enables continuous and high-resolution lineage tracing of tumor initiation and progression

(A) Generation of the KP-Tracer chimeric mouse and initiation of KP-Tracer tumors (STARMethods). Five to six months after tumor initiation, individual tumors are

dissociated into single-cell suspension and single-cell sequencing libraries are prepared.

(B) Representative images of tumors from KP-Tracer mouse. Tumors are positive for mCherry and mNeonGreen. Scale bars, 5 mm.

(C) Tumor lineage reconstruction data analysis pipeline.

(D) Target site capture efficiency across tumors from mice generated from one representative mESC clone (2E1). Dots represent the average capture rate of a

specific target site in a tumor.

(E) Phylogeny with MULTI-seq, lenti-Cre-BC, and target site information for an example tumor. Each row represents a single cell, and each column indicates

barcode or target site information (ordered by the percentage of target sites detected across cells). Unique colors represent unique barcodes or indels, uncut

sites are shown in light gray, and missing data are indicated in white.

(F) Comparison of phylogenetic distance (from the reconstructed tree) and allele edit distance (from target sites) for the example tumor in (E).

See also Figure S1 and Table S1.
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Figure 2. Rare subclones expand during tumor progression, marked by increased DNA copy number variation, cell-cycle score, and

fitness score

(A) Example tumor phylogenies with expansions highlighted with red or purple branches.

(B) The number of expansions and percentage of expanding cells across tumors. Tumors are ranked by the total percentage of cells in expanding subclones.

(C) CNV numbers per cell (outer bar) in expanding (red) versus nonexpanding (black) cells of an example tumor.

(D) Comparison of CNV number per cell in expansions versus nonexpansions (permutation test, p < 0.0001).

(E) Comparison of cell-cycle transcriptional scores of cells from the expanding and nonexpanding subclones (two-sided Mann-Whitney U test, * p < 0.05,

** p < 0.01). Tumors without expansions are labeled as N/A.

(F–H) Phylogenetic single-cell fitness scores in expansions.

(F) A representative tumor phylogeny with single-cell fitness scores overlaid.

(G) Single-cell fitness scores in representative tumors.

(H) Cancer cells from expansions have significantly higher single-cell fitness scores (two-sided Mann-Whitney U test, p < 0.0001).

See also Figure S2.
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Several lines of evidence support the accuracy of the inferred

phylogenies and subclonal dynamics. First, lineage trees inferred

byanalternativephylogenetic reconstructionalgorithm,Neighbor

Joining, revealed consistent subclonal expansion proportions

(Saitou and Nei, 1987; Pearson’s r = 0.87, Figure S2E). Second,
copy number variation (CNV)—a common feature for inferring

subclonal structure in tumors (Tarabichi et al., 2021)—corrobo-

rated tumor subclonal structure. Specifically, despite the low-

resolution lineages inferred from detected CNVs, in the majority

of tumors (20/21), the relationships from subclonal CNVs were
Cell 185, 1905–1923, May 26, 2022 1909
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Figure 3. Integration of phylodynamics and transcriptome uncovers fitness-associated gene programs for KP tumors

(A) Gene expression UMAP (McInnes et al., 2018) and clustering of cancer cells from KP-Tracer tumors.

(B and C) Identification of a transcriptional FitnessSignature.

(B) Differential expression analysis identifies genes positively (red) and negatively (blue) associated with single-cell fitness.

(C) Meta-analysis of fitness-associated genes across all KP tumors.

(D) Gene expression UMAP annotated by individual cells’ single-cell FitnessSignature scores (normalized to a 0–1 scale).

(E) Average FitnessSignature scores of each Leiden cluster (normalized to 0–1). Colors reflect the Leiden clusters in (A).

(F) Kaplan-Meier survival analysis of TCGA lung adenocarcinoma patients (n=495) stratified into high (red) and low (blue) groups based on gene expression of the

derived transcriptional FitnessSignature. (Log-rank test, p = 5e–4).

(G) Gene expression UMAP annotated with transcriptional scores of the three fitness gene modules. (H) Heatmap of Z-normalized Pearson’s correlations be-

tween marker gene expression and fitness module scores for selected differentially expressed genes with manual annotations. Genes are colored by assigned

fitness gene module; genes in black indicate helpful markers that did not appear in a fitness module.

(legend continued on next page)
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significantly similar to the relationships inferred from our Cas9

lineage-tracing trees (Figures S2G–S2I; Permutation Test; see

STAR Methods). Furthermore, expanding subclones were signif-

icantly enriched for CNVs (Mann-Whitney U test p < 0.0001,

Figures 2C, 2D, andS2J), and independent subclonal expansions

from the same tumor could harbor distinct CNV patterns (Fig-

ureS2K). Third, cancer cells in expansionshadsignificantly higher

expression of cell-cycle genes (Mann-Whitney U test; Figures 2E

andS2F;STARMethods). Togetherwithour tumor spatial-lineage

analysis (see below), these orthogonal data strongly support the

fidelity of our tumor phylogeny and expansion calling and indicate

the aggressive nature of subclonal expansions.

In population genetics, the relative ‘‘fitness’’ of a sample can

be defined as the growth advantage of an individual compared

with the rest of the population (Williams et al., 2018). The fine-

scale structure of our lineages offers us the opportunity to pre-

dict fitness at single-cell resolution (Figure 2F; STAR Methods,

Neher et al., 2014). This analysis revealed a spectrum of intratu-

moral fitness distributions across tumors (Figure 2G) with ex-

panding cells consistently having higher single-cell fitness

scores (Mann-Whitney U test p < 0.0001, Figures 2F and 2H).

Overall, these results argue that we can quantitatively infer the

relative fitness of individual cells within a tumor and that cell

fitness is consistent with the subclonal dynamics revealed by

the tumor phylogeny.

Integration of phylodynamics and transcriptome
uncovers fitness-associated gene programs for KP
tumors
With quantitative measurements of single-cell fitness in each tu-

mor, we next sought to identify the molecular features consis-

tently associated with subclonal expansions. Consistent with

KP tumor progression being driven largely by epigenetic rather

than genetic changes (LaFave et al., 2020; Arnal-Estapé et al.,

2020; Marjanovic et al., 2020), we observed that CNV profiles

within expansions were largely inconsistent across tumors (Fig-

ure S2L). We therefore examined the transcriptomic differences

underpinning expansion. By integrating the scRNA-seq data

across tumors, we detected 15 distinct subpopulations charac-

terized by marker genes consistent with previous work in the KP

model: spanning from an early-stage alveolar type 2 (AT2)-like

population, characterized by expression of Lyz2 and Sftpc, to

late-stage Epithelial-Mesenchymal transition (EMT)-related clus-

ters characterized by expressions of Vim, Twist1, and Zeb2

((Marjanovic et al., 2020; LaFave et al., 2020); Figures 3A and

S3A; Table S2). Notably, although normal AT2 cells appeared

similar to the tumor AT2-like state, the transcriptome of cancer

cells could be clearly distinguished from normal AT2 cells (Fig-

ure S3B; STAR Methods). Together, the agreement of transcrip-

tomic states observed here and in previous studies implies that

the continuous lineage-tracing system did not strongly perturb

tumor progression.
(I) Personality plots of three representative tumors displaying the fold change in fit

regions. Vertices indicate individual fitness modules. Axes are normalized to 0.4-

change of 1 (no change), and values greater than 1 indicate the cells in expansions

reflect the module a tumor expansion is characterized by.

See also Figure S3 and Tables S2 and S3.
Combining the aforementioned single-cell fitness scores with

single-cell transcriptomes for each tumor, we next identified

genes associated with changes in fitness for each tumor (Fig-

ure 3B; STAR Methods). We then utilized a majority vote meta-

analysis of differentially expressed genes across tumors to find

genes consistently associated with fitness differences (Fig-

ure 3C; STAR Methods; Table S3). The resulting consensus

genes associated with elevated fitness revealed broad transcrip-

tomic changes and were enriched for gene sets associated with

ribosome biogenesis, stem cell differentiation, and wound heal-

ing (Table S3).

The genes detected in our majority vote meta-analysis repre-

sented a transcriptional program (hereafter referred to as the

‘‘FitnessSignature’’) consistently associated with tumor expan-

sions that could be used to describe state trajectories underlying

tumor evolution. Indeed, the AT2-like cluster had the lowest

FitnessSignature score, whereas the Mesenchymal clusters

scored highest (Figures 3D and 3E; STAR Methods). Interest-

ingly, the ranking of Leiden clusters in between these extremes

suggested that an increase in FitnessSignature was concomitant

with transitions from the AT2-like state through various Gastric,

Endoderm-like, or Lung Mixed states to an eventual Mesen-

chymal state (Figures 3D and 3E). Importantly, the

FitnessSignature scores were significantly associated with

poor prognosis in patients with lung adenocarcinoma from The

Cancer Genome Atlas (TCGA; The Cancer Genome Atlas

Research Network, 2014; Figure 3F; STAR Methods).

Consistent with previous studies showing increased transcrip-

tional heterogeneity during KP tumor evolution (Marjanovic et al.,

2020), we observed that tumors occupied qualitatively different

transcriptional states (Figure S3E). This progression could be

categorized into three nonoverlapping gene modules decom-

posed from the FitnessSignature (Figures S3F and S3G; STAR

Methods): Module 1 contained genes enriched for gastric and

endoderm signatures (Tff1, Hnf4a, and Gkn2), Module 2 con-

tained a subset of EMT marker genes and some neuronal genes

(Hmga2, Inhba, and Gap43), and Module 3 contained classical

mesenchymal and prometastasis genes (Vim, Twist1, Cdh2,

Cd109, and Runx2) (Figures 3G and 3H; Table S3). Additionally,

tumor subclonal expansions could preferentially employ a partic-

ular module, although some expansions exhibited coexpression

of multiple modules (Figures 3I, S3I, and S3J; STAR Methods).

Importantly, the expression of eachof thesemoduleswaspredic-

tive of worse patient survival in the TCGA lung adenocarcinoma

cohort (Figure S3H; STAR Methods). Collectively, these results

argue that increased cell fitness in lung adenocarcinoma can

be achieved via at least three distinct transcriptional modules.

Intratumoral transcriptional heterogeneity is driven by
transient increases in plasticity of cell states
We next investigated the dynamics of intratumoral transcrip-

tional diversity, as such behavior can be a driver of tumor
ness module scores of individual expansions compared with the nonexpanding

fold to 2.2-fold change observed across tumors. Inner circle represents a fold

exhibiting enriched usage of the particular fitness genemodule. Colors (see (H))
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Figure 4. Intratumoral transcriptional heterogeneity is driven by transient increases in plasticity of cell states

(A and B) Representative tumors with (A) low EffectivePlasticity and (B) high EffectivePlasticity. Outer bar indicates the Leiden cluster of single cells (as in 3A).

Selected clades are highlighted on the gene expression UMAP to the right of phylogenies.

(C and D) Quantification of scEffectivePlasticity for each transcriptional state (Leiden cluster) for tumors in (A) and (B).

Each dot represents a single cell’s EffectivePlasticity.

(E) Distribution of mean EffectivePlasticity scores for each Leiden cluster across KP tumors. Each dot represents a Leiden cluster’smean EffectivePlasticity within

a tumor. Leiden clusters are ranked by the mean of the distribution across tumors.

(F) scEffectivePlasticity score overlaid onto the gene expression UMAP. Cells marked in gray are from metastases and not included.

(G) Relationship between tumor average FitnessSignature and EffectivePlasticity. Three representative phylogenies are displayed with Leiden cluster annotations

(outer circle).

(H) A model describing changes of transcriptome heterogeneity and EffectivePlasticity following tumor progression.

See also Figure S4.
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aggressiveness and therapeutic resistance (Patel et al., 2014;

Rathert et al., 2015; Shaffer et al., 2017; Kim et al., 2018; Marja-

novic et al., 2020; Maynard et al., 2020). In our model, tumors

varied widely in the transcriptional states they occupied, rarely

being dominated by a single state. Although tumors with low

FitnessSignature scores were enriched for the AT2-like state, in-

creases in the fitness score were associated with Gastric-like,

Lung Mixed, and Mesenchymal states (Figure S4A). Moreover,

tumors had generally similar levels of transcriptional state het-

erogeneity, as measured by the Shannon’s Entropy Index ((Mar-

janovic et al., 2020; LaFave et al., 2020); Figure S4B).

How is this intratumoral diversity established and maintained?

In principle, this diversity reflected by the entropy index can be
1912 Cell 185, 1905–1923, May 26, 2022
achieved either by rare transitions and stable commitment to

distinct states or by frequent transitions between these states.

Lineage tracing is uniquely positioned to distinguish these two

models as it directly reports how intermixed transcriptomic states

are in subclonal lineages, thus providing a measure of effective

plasticity. Interestingly, tumor subclones exhibited varying

amounts of plasticity: some tumor subclones were dominated

by a single-transcriptomic state, suggesting strong stability (Fig-

ure 4A), whereas others were characterized by strong mixing

between transcriptomic states (Figure 4B). Using tumor phylog-

enies, we estimated the frequency of cellular state changes for

each tumor to create an empirical measurement of the tree plas-

ticity (hereafter referred to as the ‘‘EffectivePlasticity’’ score) and
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extended thismeasure to a single-cell statistic (‘‘scEffectivePlas-

ticity’’) by averaging together the EffectivePlasticity scores for all

the subclades that contained a particular cell (Quinn et al., 2021;

STAR Methods). Importantly, this scEffectivePlasticity statistic

was consistent with alternative approaches that quantified

the effective plasticity by comparing transcriptional states be-

tween cells with similar indel states (without relying on trees;

Figures S4C–S4E) or by computing dissimilarity in gene expres-

sion profiles between nearest neighbors on the phylogeny

(Figures S4F–S4H; STAR Methods).

In two representative tumors, we observed that cells from the

AT2-like state exhibited consistently low scEffectivePlasticity,

whereas other states like the Gastric- and AT1-like state had

elevated scEffectivePlasticity scores (Figures 4C and 4D). To

systematically quantify the relative effective plasticity of different

cell states, we averaged scEffectivePlasticity scores for each

Leiden cluster on a tumor-by-tumor basis (Figure 4E). Mesen-

chymal (Leiden clusters 1 & 2) and AT2-like clusters (Leiden

cluster 4) represented the most stable states, whereas the previ-

ously reported ‘‘High-Plasticity Cell State’’ (Marjanovic et al.,

2020; Leiden cluster 5), Gastric-like (Leiden clusters 3, 8, 12),

and Endoderm-like states (Leiden cluster 0) exhibited high

EffectivePlasticity (Figure 4F).

We next investigated the relationship of tumor plasticity, as

measured by EffectivePlasticity, and aggressiveness, as

measured by the FitnessSignature. Although previous studies

have indicated that transcriptional heterogeneity is a hallmark

of tumor progression (Marjanovic et al., 2020), we found that

the average EffectivePlasticity score was maximized when the

FitnessSignature score was in the intermediate regime and mini-

mized when the FitnessSignature was on the low or high ex-

tremes (Figures 4G, S4I, and S4J). Taken together, these find-

ings support a model of tumor progression, whereby the loss

of AT2-like state was accompanied by rapid, parallel transitions

to generate high transcriptomic heterogeneity, which permitted

selection of increasingly stable states with higher-fitness and ul-

timately resulted in subclonal expansion and tumor progression

(Figure 4H).

Mapping the phylogenetic relationships between cell
states reveals common paths of tumor evolution
In principle, the observed cellular plasticity and subsequent tran-

scriptional heterogeneity in the KP model could arise from either

random or structured evolutionary paths through transcriptional

states. To investigate the consistency of evolutionary paths

across tumors, we developed a statistic termed ‘‘Evolutionary

Coupling,’’ which extends a clonal coupling statistic (Weinreb

et al., 2020; Wagner et al., 2018) to quantify the phylogenetic dis-

tance between pairs of cell states (STAR Methods).

Applying this approach to individual tumors uncovered distinct

coupling patterns between transcriptomic states. In one example

tumor, the LungMixed state wasmore closely related to the High-

Plasticity state than to the AT2-like state (Figures 5A and 5B). In

another tumor, the Gastric-like and High-Plasticity states clus-

tered together, whereas the AT1-like and Early Gastric states

clustered together (Figures 5C and 5D). Relationships for these

two tumors were consistent with alternative definitions for inter-

state coupling, inferred directly from the indel information (without
relying on trees; Figures S5A and S5B; STAR Methods) or based

on local neighborhoods on the tree (Figure S5C and S5D; STAR

Methods); these statistics were generally consistent across trees

(Figure S5E).

A data-driven hierarchical clustering of the full set of tumors

based on their transcriptional state occupancy and Evolutionary

Couplings revealed that tumors could be classified into three

distinct groups (‘‘Fate Clusters’’; Figures 5E and S5F; STAR

Methods; Table S4). Although some transcriptional states were

shared between Fate Clusters 1 and 2 (including the AT2-like,

AT1-like, andHigh-Plasticity states), Fate Cluster 1 was predom-

inantly distinguished by couplings that include the Gastric-like

(Leiden clusters 3, 8, and 12) and Endoderm-like states (Leiden

cluster 0; Figure 5F, left, Figure S5G) and Fate Cluster 2 by evo-

lution toward the Lung Mixed state (Leiden cluster 10; Figure 5F,

middle, Figure S5G). Fate Cluster 3 wasmore difficult to interpret

as it lacked couplings with the AT2-like state and instead was

dominated by high-fitness states, such as early EMT (Leiden

clusters 7 and 13) and Mesenchymal states (Leiden clusters 1

and 2; Figure 5F, right, Figure S5G).

We thus hypothesized that themajority of differences between

tumors was driven by tendencies toward Fate Clusters 1 or 2.

Indeed, Principal Component Analysis (PCA) on Evolutionary

Couplings and state composition revealed that the first two

principal components explained a substantial amount of the

observed variance (�32%; Figure S5H), and couplings involving

the Gastric & Endoderm states (Fate Cluster 1; Leiden clusters 3,

8, 0) or the Lung Mixed state (Fate Cluster 2; Leiden cluster 10)

were among the strongest features distinguishing tumors (Fig-

ure S5I). Taken together, these distinct coupling patterns argue

that tumor progression from the initial AT2 state preferentially

follows one of two nonoverlapping evolutionary paths, charac-

terized by Fate Clusters 1 and 2, to aggressive states like those

found in Fate Cluster 3.

To characterize the transcriptional changes that underlie these

two alternative fates (Fate Clusters 1 & 2), we developed ‘‘Phylo-

time’’: a single-cell statistic that quantifies the evolutionary dis-

tance between an individual cell and cells in the progenitor,

AT2-like state (STAR Methods). Importantly, estimates of Phylo-

time were consistent with different metrics for approximating

distances on the tree: either by the absolute number ofmutations

or the number of mutation-bearing edges (Figures S5J and S5K).

Integrating Phylotimes from tumors within Fate Clusters 1 and 2

confirmed two separate evolutionary routes (Figure 5G) and

highlighted distinct transcriptional changes associated with Phy-

lotime along each route (Figure 5H; STAR Methods; Table S5).

Specifically, although expressions of early markers like Lyz2

and Sftpc were shared in early Phylotime of both Fate Clusters,

late Phylotime in Fate Cluster 1 was enriched for gastric and

endoderm markers like Gkn2, whereas late Phylotime in Fate

Cluster 2 was characterized by markers of airway progenitors,

such as Sox2 and Scgb1a1 (Leeman et al. 2014), and markers

of tumor propagating cells, like Cd24a and Itgb4 (Zheng et al.

2013; Bierie et al. 2017). Although Fate Cluster 3 tumors gener-

ally had poor couplings with earlier states, our data suggest

that tumors can evolve from either the Fate Cluster 1 or Fate

Cluster 2 into an EMT state and progress to late-stage Mesen-

chymal states (Figure S5L). Overall, our analysis provides
Cell 185, 1905–1923, May 26, 2022 1913
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Figure 5. Mapping the phylogenetic relationships between cell states reveals common paths of tumor evolution

(A–D) Transcriptional state relationships of representative tumors are quantified with Evolutionary Couplings.

(A and C) phylogenies of tumors 3435_NT_T1 and 3513_NT_T3 with overlaid Leiden cluster annotations (colors from Figure 3A).

(B and D) Corresponding normalized Evolutionary Couplings between Leiden clusters in each tumor.

(E) UMAP projection of KP tumor Evolutionary Couplings annotated by identified ‘‘Fate Clusters’’ (see Figure S5F). Dots correspond to tumors.

(F) Aggregated Evolutionary Couplings between transcriptional states of tumors from each Fate Cluster visualized on the gene expression UMAP. Thickness of

bars reflect the average magnitude of couplings across tumors in a Fate Cluster.

(G) Gene expression UMAP annotated by Phylotime of single cells from tumors in Fate Cluster 1 (top) and 2 (bottom) (normalized to 0–1). Cells from tumors that do

not appear in the Fate Cluster of interest are shown in gray.

(H) Significant gene expression changes along Phylotime for Fate Clusters 1 and 2 across Phylotime quantiles. Genes are annotated by their assigned Fate

Cluster. Colors in heatmap are library-normalized gene expression, Z-normalized across quantiles of both Fate Clusters.

(I) Summary of major paths of KP tumor progression. Solid lines indicate direct evidence of Evolution Couplings; dotted lines indicate couplings likely involving

unobserved intermediate states; and gray lines indicate couplings that are supported by rare examples.

See also Figure S5 and Tables S4 and S5.
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evidence that KP tumors could evolve predominantly through

one of two major paths with one toward Gastric-like and Endo-

derm-like state and the other through the Lung Mixed state,

with distinct transcriptional changes associated with each evolu-

tionary trajectory (summarized in Figure 5I).

Loss of tumor suppressors alters tumor transcriptome,
plasticity, and evolutionary trajectory
Tumor suppressor genes regulate diverse cellular activities, and

their loss is associated with increased tumor aggressiveness

(Weinberg, 1991; Sherr, 2004); however, it remains unclear

how these genes affect tumor evolutionary dynamics in vivo.

Here, we combined genetic perturbations with our quantitative

phylodynamic approaches to interrogate how additional onco-

genic mutations altered KP tumor evolutionary trajectories.

We focused on two frequently mutated tumor suppressors in

human lung adenocarcinoma, LKB1 and APC (Ding et al.,

2008; The Cancer Genome Atlas Research Network, 2014;

Skoulidis et al., 2015). Both genes have been studied extensively

in both human and mouse models and appear to regulate pro-

gression through distinct mechanisms (Ji et al., 2007; Carretero

et al., 2010; Nguyen et al., 2009; Hollstein et al., 2019; Tammela

et al., 2017; Murray et al., 2019; Kerk et al., 2021; Parsons et al.,

2021). We engineered our lenti-Cre-BC vector to carry an addi-

tional sgRNA targeting Lkb1 or Apc, such that delivery of this

vector simultaneously initiated tumor induction, lineage tracing,

and disruption of the targeted tumor suppressor gene. With

this system,we collected data from 18,321 cells across 57 KP tu-

mors with Lkb1 knockout (24 primary and 33 metastatic tumors;

referred to as KPL tumors) and 13,825 cells across 35 KP tumors

with Apc knockout (23 primary and 12 metastatic tumors;

referred to as KPA tumors). Targeting of either Lkb1 or Apc

increased tumor burden (Rogers et al., 2018), but did not appear

to alter the number and relative size of subclonal expansions

(Figures S6A and S6B). However, genes associated with tumor

fitness were largely distinct across genetic backgrounds (Fig-

ure S6C; Table S3).

To examine whether perturbations alter the transcriptional

landscape of KP tumors, we integrated transcriptional states of

KPL and KPA tumors with the prior KP dataset. Although many

cells could be classified into existing Leiden clusters identified

in the KP analysis, the additional perturbations also created four

new transcriptional states (Figure 6A; STAR Methods). As ex-

pected from Apc0s role as a negative regulator of Wnt signaling

(Barker et al., 2009), Axin2 expression was high in the three

KPA-specific clusters, indicative of elevated Wnt signaling (Fig-

ure S6D), as was the expression of Wnt antagonists such as

NotumandNkd1 thatwere recently reported to increase theability

of cancer cells to compete with the neighboring niche in human

APC mutant colon tumors ((Flanagan et al., 2021; Neerven et al.,

2021); Figure S6D; Table S3). Moreover, targeting of Lkb1 or

Apc resulted in changes to the relative occupancies of transcrip-

tomic states: KPL tumors were primarily enriched in the Pre-EMT

state (Leiden cluster 9), whereas KPA tumors were enriched in

Apc-specific early, mesenchymal, and metastatic states (Leiden

clusters 15, 16, and 17; Figures 6B, 6C, and S6E).

Interestingly, although most cell states had comparable

EffectivePlasticity across tumor genotypes (Figure S6F), the
Pre-EMT state (Leiden cluster 9) in KPL tumors had significantly

less EffectivePlasticity, indicating stabilization of this cell state

(p < 0.05, Mann-Whitney U test; Figure 6D). We next identified

genes differentially expressed in cells from KPL tumors in the

Pre-EMT cluster (Figure 6E; Table S2; STAR Methods), which

included gene programs that can promote prometastatic chro-

matin remodeling (Sox17; Pierce et al., 2021), tumor progression

(Ifitm1 and loss of Gata6; Yan et al., 2019; Cheung et al., 2013),

metastatic ability (Mmp7; He et al., 2018), and tumor fitness by

modulating cancer-immune cell interaction (Cd24a, Il33, and

loss of Apoe; Sinjab et al., 2021; Li et al., 2019; Tavazoie et al.,

2018). These together potentially explain why the Pre-EMT state

was uniquely stabilized in KPL tumors.

To examine how loss of tumor suppressors altered evolu-

tionary trajectories, we performed PCA on the transcriptional

state occupancy and Evolutionary Couplings of individual tu-

mors and found that tumors broadly segregated according to

their genotypes (Figure 6F; STAR Methods; Table S4). Specif-

ically, KPA tumors created a unique trajectory including a

coupling between the AT2-like and the Apc-early states (Leiden

clusters 4 and 16), whereas KPL tumors were characterized

by couplings between the Pre-EMT state and nearby states

(Figure 6G).

In summary, although the targeting of the tumor suppressors

Lkb1 or Apc both increased tumor growth, their effects on cell

states, plasticity, and paths of evolution varied substantially.

Specifically, KPL tumors quickly progressed to and became

stabilized in the Pre-EMT state, whereas KPA tumors largely ex-

ploited a distinct path through new Apc-specific states (Fig-

ure S6G and summarized in Figure 6H; Table S4). Together,

our analyses highlight how lineage tracing offers rich information

for dissecting the multifaceted role of tumor suppressors in tu-

mor evolution.

Metastases originate from spatially localized,
expanding subclones of primary tumors
Metastases account for 90%of cancermortality, yet remain diffi-

cult to study because of their spatially and temporally sporadic

nature (Ganesh and Massagué, 2021). An outstanding question

is how metastases originate from the primary tumor. Here,

we integrated lineage tracing with spatial and transcriptomic in-

formation to investigate the subclonal origins and evolution of

metastases.

We first focused on a single-primary tumor, which consisted

of two independent subclonal expansions (3724_NT_T1; Fig-

ure 2B), and its four related metastases (three in liver and one

in soft tissue; Figures 7A and S7A). We performed multiregional

analysis of the primary tumor (Figure 7A, inset) and inferred a

combined phylogeny relating all cells in the primary tumor and

metastases. Integrating lineage-spatial information revealed

that individual metastases originated from distinct spatial loca-

tions (Figures 7A–7C; STARMethods) and phylogenetically orig-

inated from specific subclonal expansions in the primary tumor

(Figures 7C and 7D).

To investigate the consistency of these results, we extended

this phylogenetic analysis to five other tumor-metastasis fam-

ilies, across KP, KPL, and KPA backgrounds. Importantly, me-

tastases were consistently more closely related phylogenetically
Cell 185, 1905–1923, May 26, 2022 1915
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Figure 6. Loss of tumor suppressors alters tumor transcriptome, plasticity, and evolutionary trajectory

(A) Batch corrected and integrated gene expression UMAP of all cancer cells from KP, KPL, and KPA tumors annotated by 19 Leiden clusters (STAR Methods).

(B) Density plots of cancer cells from KP, KPL, and KPA tumors on the UMAP.

(C) Enrichment of genotypes in each Leiden cluster. Enrichments below 1 are colored blue; enrichments above 1 are colored red.

(D) Median EffectivePlasticity scores in selected Leiden clusters across genotypes (one-sided Mann-Whitney U test, *p % 0.05, n.s. = not significant).

(E) Genes up-regulated (red) and down-regulated (blue) in the Pre-EMT state of KPL tumors compared with KP and KPA tumors combined.

(F) PCA of Evolutionary Coupling and transcriptional state proportion vectors for all tumors analyzed across genotypes. Each dot represents a tumor.

(G) Biplot of top 10 features per principal component from PCA analysis shown in (F).

Evolutionary Couplings are shown as tuples (x, y); transcriptional state proportions are shown as a single number x indicating Leiden cluster ID.

(H) Summary of major evolutionary paths in KPL and KPA tumors. Solid lines indicate direct evidence of Evolution Couplings between transcriptome states and

dotted lines indicate couplings that likely involve unobserved intermediate cell states.

See also Figure S6 and Tables S2, S3, and S4.
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to specific subclonal expansions, regardless of the tumor geno-

type (Figures 7D and S7D). Collectively, our results argue that

metastases generally originated from subclonal expansions

within primary tumors. Independent metastases from the same

primary tumor could arise from spatially and phylogenetically

distinct subclones.
1916 Cell 185, 1905–1923, May 26, 2022
We next evaluated to what degree metastases preserved

the transcriptional state of their origins in the primary tumor.

Analysis of metastases arising from an example primary tumor

(3724_NT_T1) revealed that liver metastases were more similar

to the subclone from which they originated, whereas the soft tis-

suemetastasis evolved to a new transcriptional state (Figures 7E
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Figure 7. Metastases originate from spatially localized, expanding subclones of primary tumors

(A) Multiregion analysis of tumor-metastasis family 3724_NT_T1. Top left inset showed the relative spatial location of tumor pieces. The phylogeny of the primary

tumor and metastases is annotated via peripheral radial tracks for each color-coded region of the tumor (matching the inset) and four metastases.

(B) Heatmap of Evolutionary Couplings of primary tumor pieces (black) and 4 related metastases (matching colors in (A)) from the 3724_NT_T1 tumor-metastasis

family.

(C) Summary of the spatial-phylogenetic relationship of the tumor-metastasis family 3724_NT_T1. (D) Single-cell phylogenetic distance of each metastasis to the

nonexpanding and expanding subclones in its related primary tumor. Each box represents the distribution of phylogenetic distances from a metastasis to a

defined region of its related primary tumor (one-sided Mann-Whitney U test are indicated: ***p < 0.0001, n.s. = not significant).

(E and F) Gene expression UMAP annotated by metastases and their original subclones in 3724_NT_T1. Cells that are not relevant to the comparison in each

panel are shown in gray.

(G) Transcriptional distances between expanding regions of 3724_NT_T1 and its four metastases (one-sided Mann-Whitney U test are indicated: **p < 0.001,

***p < 0.0001).

See also Figure S7.
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and 7F). This was further quantified by measurements of total

transcriptional distance between each metastasis and the sub-

clonal expansions in the metastatic primary tumor (Figure 7G).

Liver metastases were significantly more similar to its originating

subclonal expansion (p < 0.0001, one-sided Mann-Whitney U

test), whereas the soft tissue metastasis did not clearly resemble

its subclonal origin (Figure 7G; STAR Methods). Consistently,

metastases from KP, KPL, and KPA mice were significantly

more similar, as measured by transcriptional state, to their

respective expanding subclades in the primary tumor as

compared with nonexpanding regions, further suggesting that

progression at the primary site is a prerequisite for metastasis

(LaFave et al., 2020; Figure S7E).

In addition, our high-resolution lineage tracing offered evi-

dence of complex metastatic behaviors, including multisubclo-

nal seeding from a primary tumor to the lymph node, and

cross-seeding from onemetastatic primary tumor to another pri-

mary tumor, or from one metastasis to another (Figures S7A–

S7C). Collectively, these results highlight the ability of phyloge-

netic analysis to trace the origins and evolution of metastases.

DISCUSSION

In this study, we developed a genetically engineered mouse

model of lung adenocarcinoma that allows Cre-inducible initia-

tion of oncogenic mutations and simultaneous continuous in vivo

lineage tracing of tumor development over many months, paired

with a single-cell transcriptomic readout. This model system

enabled us to track at an unprecedented resolution the recurring

patterns of tumor evolution from activation of oncogenic muta-

tions in single cells as they grow into large, aggressive, and ulti-

mately metastatic tumors. Three principles emerged from our

study, linking together tumor phylodynamics, fitness, plasticity,

parallel evolutionary trajectories, origins of metastasis, and ge-

netic determinants of tumor evolution.

First, tumors were driven by rare subclonal expansions that

utilized distinct fitness-associated transcriptional programs

and enabled both tumor progression at the primary site and

metastasis to distant tissues. The expansions identified by tree

topology argue for subclonal selection, distinct from evolutionary

models lacking selective sweeps observed in other cancer types

(Sottoriva et al., 2015). The identification of gene expression

states associated with tumor fitness revealed a set of transcrip-

tional fitnessmodules underlying KP-Tracer tumor development.

Importantly, these signatures of aggressive tumors found in our

mouse model were predictive of the outcome of human disease.

Despite the higher somatic mutation burden and longer devel-

oping timescales of human tumors (Campbell et al., 2017; Ja-

mal-Hanjani et al., 2017; Gerstung et al., 2020; Hill et al., 2021),

our data uncovered critical fitness gene programs that are

conserved in both mouse and human lung adenocarcinomas.

Notably, we found that metastases consistently originated

from expanding subclones, regardless of additional loss of

Lkb1 or Apc. They often retained the same transcriptional state

as their original subclones but could further adopt distinct tran-

scriptional states. This underscored the importance of tumor

progression at the primary site in enabling metastasis (Caswell

et al., 2014; Turajlic and Swanton, 2016; Hu et al., 2020; LaFave
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et al., 2020) and argues against alternative models in which me-

tastases arise early during tumor evolution (Hüsemann et al.,

2008; Podsypanina et al., 2008; Klein, 2009; Rhim et al., 2012;

Sottoriva et al., 2015).

Second, our analysis revealed that tumor progression is

accompanied by transient increases in lineage plasticity. This

period of high plasticity is followed by clonal sweeps of sub-

clones with aggressive cell states that can remain stable even

following metastasis to new environments. Our ability to monitor

how often cells are transitioning between transcriptomic states

also allowed us to untangle the relationship between intratu-

moral heterogeneity and lineage plasticity and shed light on

the dynamics of the transcriptomic heterogeneity observed in

the KP mouse model and human NSCLC (Marjanovic et al.,

2020; Laughney et al., 2020). The finding that KP tumors prog-

ress via parallel, rapid transitions between cell states is consis-

tent with previous work suggesting that epigenetic instability is

a major driver of tumor progression in this model (LaFave

et al., 2020; Marjanovic et al., 2020). Given the essential role of

cellular plasticity in tumor progression and therapeutic resis-

tance (Chaffer et al., 2013; Easwaran et al., 2014; Ge et al.,

2017; Flavahan et al., 2017; Yuan et al., 2019; Quintanal-Villa-

longa et al., 2020), the ability of our lineage-tracing system to

quantitatively explore plasticity provides a critical tool for under-

standing the role that cell state plasticity plays in various aspects

of tumor evolution.

Third, tumors evolved through stereotypical trajectories and

introduction of additional oncogenic mutations increased the

speed of tumor evolution by creating new evolutionary trajec-

tories. Traditionally, although cellular trajectories inferred by

pseudotemporal approaches have proved to be a versatile tool

for scRNA-seq datasets (Trapnell et al., 2014; La Manno et al.,

2018), they make the inviolable assumption that transcriptional

similarity indicates developmental relationship (Tritschler et al.,

2019). Overcoming this, our measurement of cell state coupling

directly from phylogenies enabled the discovery of two distinct

evolutionary paths that are substantiated by transcriptional dif-

ferences. Moreover, CRISPR targeting of tumor suppressors

Lkb1 and Apc altered the cellular plasticity and observed evolu-

tionary paths in a genotype-specific way, which can be ex-

plained by alterations in transcriptional landscape. Collectively,

our approach offers an orthogonal and more quantitative evalu-

ation of the multifaceted role genes play in tumor evolution as

compared with traditional growth-based fitness analysis. Future

studies combining the KP-Tracer model and high-throughput

in vivo functional genomics will be foundational in assessing

the evolutionary consequences of any genes of interest in lung

adenocarcinoma progression (Winters et al., 2018).

In summary, our results represent the first report of tracing the

evolutionary history of a tumor from a single-transformed cell to

an aggressive tumor using a CRISPR-based lineage tracer in an

autochthonous mouse model. The continuous and high-resolu-

tion tumor lineage tracing in this setting offers a major advance

in tumor evolution modeling by enabling quantitative inference

of fitness landscapes, cellular plasticity, evolutionary paths, ori-

gins of metastases, and the role of tumor suppressors in altering

all these facets of tumor development. With the expanding line-

age-tracing toolkit and integration of other emerging data
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modalities, we expect that the experimental and computational

framework presented here will greatly improve future efforts at

building high-dimensional, quantitative, and predictive models

of tumor evolution, thus shedding light on new therapeutic

strategies.

Limitations of the study
Our findings highlight several opportunities for future efforts.

First, we were limited in our ability to describe the directionality

of transitions or to rule out the possibility of unobserved interme-

diates. This issue could be resolved experimentally by harvesting

samples from multiple time points of tumor development or ex-

panding our lineage-tracing technology to develop multichannel

molecular recorders for simultaneous recording of marker gene

expression of intermediate states (Frieda et al., 2017; Tang and

Liu, 2018). Alternatively, enhancing the interpretability of branch

lengths by engineering a ‘‘molecular clock’’ or probabilistic

models of Cas9 editing (Park et al., 2021) could aid in the recon-

struction of unobserved intermediate states (Ouardini et al.,

2021). Second, our fitness-inference approach assumes that

evolution occurs via small effect sizemutations, whichmay over-

look the impact of mutations with large impact such as CNVs in

other tumor models (Neher et al., 2014). Third, future integration

of emerging data modalities with lineage tracing, such as com-

bined genomic, multiomic, and spatial analyses (Mimitou et al.,

2021; Ma et al., 2020; Lee et al., 2014; Stickels et al., 2021;

Chow et al., 2021), will illuminate how genetic and epigenetic

changes and the tumor microenvironment influence tumor

evolution.
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Gerald, W.L., and Massagué, J. (2009). WNT/TCF signaling through LEF1 and

HOXB9 mediates lung adenocarcinoma metastasis. Cell 138, 51–62.

Nowell, P.C. (1976). The clonal evolution of tumor cell populations. Science

194, 23–28.

Ouardini, K., Lopez, R., Jones, M.G., Prillo, S., Zhang, R., Jordan, M.I., and Yo-

sef, N. (2021). Reconstructing unobserved cellular states from paired single-

cell lineage tracing and transcriptomics data. Preprint at bioRxiv. https://doi.

org/10.1101/2021.05.28.446021.

Park, J., Lim, J.M., Jung, I., Heo, S.-J., Park, J., Chang, Y., Kim, H.K., Jung, D.,

Yu, J.H., Min, S., et al. (2021). Recording of elapsed time and temporal infor-

mation about biological events using Cas9. Cell 184, 1047–1063.e23.

Parsons, M.J., Tammela, T., and Dow, L.E. (2021). WNT as a driver and depen-

dency in cancer. Cancer Discov. 11, 2413–2429.

Patel, A.P., Tirosh, I., Trombetta, J.J., Shalek, A.K., Gillespie, S.M., Wakimoto,

H., Cahill, D.P., Nahed, B.V., Curry, W.T., Martuza, R.L., et al. (2014). Single-
1922 Cell 185, 1905–1923, May 26, 2022
cell RNA-Seq highlights intratumoral heterogeneity in primary glioblastoma.

Science 344, 1396–1401.
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Sjöblom, T., Jones, S., Wood, L.D., Parsons, D.W., Lin, J., Barber, T.D., Man-

delker, D., Leary, R.J., Ptak, J., Silliman, N., et al. (2006). The Consensus cod-

ing sequences of human breast and colorectal cancers. Science 314,

268–274.

Skoulidis, F., Byers, L.A., Diao, L., Papadimitrakopoulou, V.A., Tong, P., Izzo,

J., Behrens, C., Kadara, H., Parra, E.R., Canales, J.R., et al. (2015). Co-occur-

ring genomic alterations definemajor subsets of KRAS-mutant lung adenocar-

cinoma with distinct biology, immune profiles, and therapeutic vulnerabilities.

Cancer Discov. 5, 860–877.

Sottoriva, A., Kang, H., Ma, Z., Graham, T.A., Salomon, M.P., Zhao, Junsong,

Marjoram, P., Siegmund, K., Press, M.F., Shibata, D., et al. (2015). A big bang

model of human colorectal tumor growth. Nat. Genet. 47, 209–216.

Spanjaard, B., Hu, B., Mitic, N., Olivares-Chauvet, P., Janjuha, S., Ninov, N.,

and Junker, J.P. (2018). Simultaneous lineage tracing and cell-type identifica-

tion using CRISPR-Cas9-induced genetic scars. Nat. Biotechnol. 36, 469–473.

Speidel, L., Forest, M., Shi, S., and Myers, S.R. (2019). A method for genome-

wide genealogy estimation for thousands of samples. Nat. Genet. 51,

1321–1329.

Stadler, T., Pybus, O.G., and Stumpf, M.P.H. (2021). Phylodynamics for cell bi-

ologists. Science 371, p.eaah6266.

Stickels, R.R., Murray, E., Kumar, P., Li, J., Marshall, J.L., Di Bella, D.J., Arlotta,

P., Macosko, E.Z., and Chen, F. (2021). Highly sensitive spatial transcriptomics

at near-cellular resolution with slide-seqV2. Nat. Biotechnol. 39, 313–319.

Tammela, T., and Sage, J. (2020). Investigating tumor heterogeneity in mouse

models. Annu. Rev. Cancer Biol. 4, 99–119.

Tammela, T., Sanchez-Rivera, F.J., Cetinbas, N.M., Wu, K., Joshi, N.S., Helen-

ius, K., Park, Y., Azimi, R., Kerper, N.R., Wesselhoeft, R.A., et al. (2017). AWnt-

producing niche drives proliferative potential and progression in lung adeno-

carcinoma. Nature 545, 355–359.

Tang,W., and Liu, D.R. (2018). Rewritable multi-event analog recording in bac-

terial and mammalian cells. Science 360, p.eaap8992.

Tarabichi, M., Salcedo, A., Deshwar, A.G., Ni Leathlobhair, M., Wintersinger,

J., Wedge, D.C., Van Loo, P., Morris, Q.D., and Boutros, P.C. (2021). A prac-

tical guide to cancer subclonal reconstruction from DNA sequencing. Nat.

Methods 18, 144–155.

Tavazoie, M.F., Pollack, I., Tanqueco, R., Ostendorf, B.N., Reis, B.S., Gon-

salves, F.C., Kurth, I., Andreu-Agullo, C., Derbyshire, M.L., Posada, J., et al.

(2018). LXR/ApoE activation restricts innate immune suppression in cancer.

Cell 172, 825–840.e18.

Traag, V.A., Waltman, L., and van Eck, N.J. (2019). From Louvain to Leiden:

guaranteeing well-connected communities. Sci. Rep. 9, 5233.
Trapnell, C., Cacchiarelli, D., Grimsby, J., Pokharel, P., Li, S., Morse, M., Len-

non, N.J., Livak, K.J., Mikkelsen, T.S., and Rinn, J.L. (2014). The dynamics and

regulators of cell Fate decisions are revealed by pseudotemporal ordering of

single cells. Nat. Biotechnol. 32, 381–386.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, enzymes, and antibodies

Collagenase Type IV Thermo Fisher Scientific Cat#:

17104019

Dispase Thermo Fisher Scientific Cat#: 17105041

Trypsin Thermo Fisher Scientific Cat#: 25200056

ACK Thermo Fisher Scientific Cat#: A1049201

DNase I Millipore

Sigma

SKU 11284932001

UltraPure BSA Thermo Fisher Scientific Cat#: AM2618

Anti-mouse CD45 Monoclonal Antibody, APC BioLegend Cat#: 103111; RRID:AB_312976

Anti-mouse CD31 Monoclonal Antibody, APC BioLegend Cat#102410; RRID:AB_312905

Anti-mouse CD11b Monoclonal Antibody, APC BioLegend Cat#: 101212; RRID:AB_312795

Anti-mouse F4/80 Monoclonal Antibody, APC BioLegend Cat#: 123116; RRID:AB_893481

Anti-mouse Ter119 Monoclonal Antibody, APC BioLegend Cat#: 116212; RRID:AB_313713

MULTI-seq lipid anchor and co-anchor McGinnis et al. 2019 Generated by the Gartner lab

Knockout DMEM Gibco Cat#10829-018

Fetal Bovine Serum Hyclone Cat#SV30014

GlutaMax Gibco Cat#35050-061

Non-essential amino acids Thermo Fisher Scientific Cat#11140050

2-mercaptoethanol Sigma Cat#M-7522

Recombinant Mouse LIF Protein Millipore Cat#ESG1107

Critical commercial assays

SPRI Bead Beckman Coulter A63881

KAPA HiFi HotStart ReadyMix KAPA Biosystems KK2601

Chromium Single Cell 3’ Library & Gel Bead Kit v2 10x Genomics PN-120237

Chromium Single Cell A Chip Kit 10x Genomics PN-1000009

Chromium i7 Multiplex Kit 10x Genomics PN-120262

Qiagen Plasmid Giga kit Qiagen cat. no. 12191

Site-directed mutagenesis kit New England Biolabs E0554S

Agilent Technologies High Sensitivity DNA Kit Fisher Scientific NC1738319

Super PiggyBac transposase System Biosciences PB210PA-1

Deposited data

Raw data from KP-Tracer mice (scRNA-seq,

MULTI-seq, target site, and Lenti-Cre-BC)

This manuscript NCBI BioProject: PRJNA803321

Processed data for KP-Tracer tumors This manuscript https://doi.org/10.5281/zenodo.5847461

Interactive VISION and PhyloVision Reports This manuscript https://doi.org/10.5281/zenodo.5888895

Oligonucleotides

oDYT011 sgNT oligo top

tTAGCTCTtAAACCGCGGAGCCGAATACCTCGCCAACAag

This manuscript N/A

oDYT012 sgNT oligo bottom

TTGGCGAGGTATTCGGCTCCGCGGTTTaAGAGC

This manuscript N/A

oDYT013 sgLkb1 oligo top

tTAGCTCTtAAACTTGTGACTGCGGCCCACCACCAACAag

This manuscript N/A

oDYT014 sgLkb1 oligo bottom

TTGGTGGTGGGCCGCAGTCACAAGTTTaAGAGC

This manuscript N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

oDYT015 sgApc oligo top

tTAGCTCTtAAACCGGAGTGAAACTACGCTCAAcCAACAag

This manuscript N/A

oDYT016 sgApc oligo bottom

TTGgTTGAGCGTAGTTTCACTCCGGTTTaAGAGC

This manuscript N/A

oDYT019 gibson_3xsg_piggy FWD

GACTGGATTCCTTTTTTAGGGCCCATTGGTctagaCGTGA

CCGAGCTTGTC

This manuscript N/A

oDYT020 gibson_3xsg_piggy REV

CGGGGAAAAAGCCATGTTTAAACGcggccgcctaatggatcct

agtactcgaG

This manuscript N/A

oDYT021 gibson_TS1.1gB_ FWD

catggacgagctgtacaagtaaTGAATTAATtaaGTCACGAATCC

AGCTAGCTG

This manuscript N/A

oDYT022 gibson_TS1.1gB_ REV

CCATTATAAGCTGCAATAAACAAGTTTCCTTAGCCGCTA

ATAGGTGAGCAGTTAACACCTGCAGGAGCGATGG

This manuscript N/A

oDYT023-030 10x_target site amplification_primer_F

AATGATACGGCGACCACCGAGATCTACACNNNNNNNN

TCTTTCCCTACACGACGCTCTTCCGATCT

This manuscript N/A

oDYT031-038 10x_target site amplification_primer_R

CAAGCAGAAGACGGCATACGAGANNNNNNNNTGTCTC

GTGGGCTCGGAGATGTGTATAAGAGACAGAATCCAGC

TAGCTGTGCAGC

This manuscript N/A

oDYT039 MULTIseq spike-in

CCTTGGCACCCGAGAATTCC

This manuscript N/A

oDYT040 MULTIseq P5

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA

CACGACGCTCTTCCGATCT

This manuscript N/A

oDYT041-48 MULTIseq P7

CAAGCAGAAGACGGCATACGAGATNNNNNNNNGTGACT

GGAGTTCCTTGGCACCCGAGAATTCC

This manuscript N/A

oDYT049 P5 universal for Lenti-BC

AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTA

CACGACGCTCTTCCGATCT

This manuscript N/A

oDYT050-059 P7 for Lenti-BC

CAAGCAGAAGACGGCATACGAGATNNNNNNNNAGTCTC

GTGGGCTCGGAGATGTGTATAAGAGACAGGACCTCCCT

AGCAAACTGGGGCACAAG

This manuscript N/A

Software and code

10X cellranger https://support.10xgenomics.com/

single-cell-gene-expression/

software/pipelines/latest/installation

v2.1.1

deMULTIplex https://github.com/chris-mcginnis-

ucsf/MULTI-seq

v1.0.2

inferCNV https://github.com/broadinstitute/

infercnv

v1.11.1

Scanpy https://github.com/theislab/scanpy 1.7.0rc1

Jungle https://github.com/felixhorns/jungle N/A

Hotspot DeTomaso & Yosef, 2021 v0.9.1

Evolutionary Coupling This study https://doi.org/10.5281/zenodo.6354596

Phylotime This study https://doi.org/10.5281/zenodo.6354596

EffectivePlasticity This study https://doi.org/10.5281/zenodo.6354596

Subclonal expansion detection This study https://doi.org/10.5281/zenodo.6354596

Cassiopeia tree reconstruction algorithms Jones et al, 2020 and this study https://doi.org/10.5281/zenodo.6354596
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact Jonathan

Weissman (weissman@wi.mit.edu).

Materials availability
Plasmids generated in this study are being submitted to Addgene. All unique/stable reagents generated in this study are available

from the lead contact with a completed Materials Transfer Agreement.

Data and code availability
Raw single-cell RNA-sequencing data has been deposited at the NCBI Sequence Read Archive database and are publicly avail-

able as of the date of the publication. Accession numbers are listed in the key resources table. Processed single-cell data, recon-

structed phylogenies, derived statistics, interactive VISION (DeTomaso et al., 2019) and PhyloVision (Jones et al., 2022) reports

have been deposited at Zenodo and are publicly available as of the date of the publication. DOIs are listed in the key re-

sources table.

All original code is available on Github (https://github.com/mattjones315/KPTracer-release) and has been deposited at Zenodo

and is publicly available as of the date of the publication. DOIs are listed in the key resources table.

Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND SUBJECT DETAILS

Chimeric lineage tracing mouse model
All mouse experiments described in this study were approved by theMassachusetts Institute of Technology Institutional Animal Care

and Use Committee (IACUC) (institutional animal welfare assurance no. A-3125-01). A male mouse embryonic stem cell (mESC) line

harboring the conditional alleles KrasLSL-G12D/+ and Trp53fl/fl (KP) was engineered with the lineage tracer cassettes. The engineered

and selected mESC clones were injected into blastocysts from albino B6 or CD1 background for chimera making as previously

described (Zhou et al. 2010). We chose to use the chimeric mice strategy because the multiple, random integration of lineage tracing

target sites in the genome makes it challenging for breeding stable strains. Both male and female mice with more than 10% chime-

rism based on coat color were used in this study. Tumors were initiated by intratracheal infection of mice with lentiviral vectors ex-

pressing Cre recombinase (DuPage, Dooley, and Jacks 2009). Five total mESC cloneswere used in this study to avoid idiosyncrasy in

clonal behavior and analyses were performed on all tumors combined. Lenti-Cre-BC vector was co-transfected with packaging vec-

tors (delta8.2 and VSV-G) into HEK-293T cells using polyethylenimine (Polysciences). The supernatant was collected at 48h post-

transfection, ultracentrifuged at 25,000 r.p.m. for 90 min at 4C, and resuspended in phosphate-buffered saline (PBS). 8-12-week-

old chimeras were infected intratracheally with lentiviral vectors, including lenti-Cre-BC-sgNT (2x107 PFU) or lenti-Cre-BC-sgLkb1

(4x106 PFU) or lenti-Cre-BC-sgApc (1x107 PFU) to achieve similar aging time after tumor initiation.

METHOD DETAILS

Lenti-sgRNA-Cre-Barcode vector
The lenti_sgRNA_Cre_barcode vector was derived from a previously described Perturb-seq lentiviral vector (Adamson et al., 2016),

pBA439, with the following changes: the two loxP sites were removed by site-directed mutagenesis (SDM) using oDYT001 and

oDYT002 followed by oDYT009 and oDYT010; the Puro-BFP was removed using restriction sites NheI and PacI and was replaced

by Cre that was PCR amplified using oDYT003 and oDYT004 via Gibson assembly; a ubiquitous chromatin opening element (UCOE)

that was PCR amplified using oDYT005 and oDYT006 was introduced using restriction sites NsiI and NotI via Gibson assembly.

oDYT007 and oDYT008 (containing EcoRI and SbfI sites for subsequent barcode cloning) were then annealed and ligated using re-

striction sites BclI and PacI. Three different sgRNAs of interest were then cloned into the resulting vector using pairs of top and bot-

tom strand sgRNA oligos: sgNT (non-targeting) (oDYT011 and oDYT012), sgLkb1 (oDYT013 and oDYT014), and sgApc (oDYT015

and oDYT016) were each annealed and ligated using restriction sites BlpI and BstXI to form pDYT003, pDYT004, and pDYT005

respectively. These sgRNAs have been used and validated previously (Rogers et al. 2017, 2018). Finally, a whitelist barcode oligo

pool consisting of 249,959 unique 16-nucleotide barcodes where every barcode has a Levenshtein distance of >3 from every other

barcode was designed. The whitelist barcode library was PCR amplified then introduced at the 3’UTR region of Cre in each of the

three constructs using restriction sites EcoRI and SbfI.

Lineage tracer vector (Target site & triple sgRNAs)
The lineage tracer vectors pDYT001 and pDYT002 were derived from previously described target site plasmids, PCT 60-62 (Chan

et al. 2019; Quinn et al. 2021; Jones et al. 2020). A loxP site was first removed from both PCT61 and PCT62 using oDYT017 and
e3 Cell 185, 1905–1923.e1–e13, May 26, 2022
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oDYT018 via site-directed mutagenesis. The triple sgRNA cassettes driven by distinct U6 promoters in PCT61 and PCT62 were then

PCR amplified using oDYT019 and oDYT020 and introduced into the PCT60 backbone using restriction sites XbaI and NotI via

Gibson assembly. Finally, the target site barcode library was PCR amplified from a previously described gene fragment from

PCT48 (Jones et al. 2020), using oDYT021 and oDYT022 and introduced into the two resulting vectors above using restriction sites

PacI and HpaI to form pDYT001 and pDYT002, which contain the triple guide cassette from PCT61 and PCT62 respectively. The

target site library consists of a 14-bp random integration barcode and three target sites (ade2, bri1, whtB), which are complementary

to the three sgRNAs.

Lineage tracing embryonic stem cell engineering
KP*17 is an embryonic stem (ES) cell line derived from C57BL/6-129/Sv F1 background engineered with conditional alleles

KrasLSL_G12D/+; p53fl/fl. ES cells were maintained with JM8 media (500mL: 82.9% Knockout DMEM (Gibco Cat#10829-018), 15%

FBS (Hyclone Cat#SV30014), 1% GlutaMax (Gibco Cat#35050-061), 1% Non-essential amino acids (Thermo Fisher Scientific

Cat#11140050), 0.1% 2-mercaptoethanol (Sigma Cat#M-7522), 500,000U Recombinant Mouse LIF Protein (Millipore

Cat#ESG1107)) with feeders. KP*17 was first targeted using CRISPR-assisted HDR to generate Rosa26LSL-Cas9-P2A-mNeonGreenwhich

was validated for correct targeting by PCR and southern blot and validated for Cas9 activity. The lineage tracing transposon vectors

were then introduced together with transposase vector (SBI) by transfection. Three passages after transfection, mESCswere purified

by FACS based on mCherry expression and expanded as individual clones.

Target site integration number was quantified as the following: We first used fluorescence-based readout to examine mCherry

expression of each ES cell clone in 96 well format, which allowed us to narrow down the ES clone candidates with relatively high

expression of mCherry (the reporter of lineage tracer library). Then we used quantitative genomic PCR to count the number of lineage

tracer genome integration in each ES cell clone by amplifying the target site regions (oDYT062 and oDYT063) and normalized to a 2N

locus, b-actin, in the genome (oDYT060 and oDYT061). Samples were run in triplicates and the reactions were performed on a

QuantStudio 6 Flex Real-Time PCR System. In this study, we used the following ES clones in the tumor analysis due to a combination

of high chimeric rate and good target site capture: 1D5, 2E1, 1C4, 2F4 and 2H9. Clones 1D5, 1C4were engineered with pDYT001 and

clones 2E1, 2F4 and 2H9were engineered with pDYT002. All five cloneswere used independently for generating chimericmice in this

study and no major difference in their lineage tracing performance was observed.

Sample preparation and purification of cancer cells
Tumors were harvested and single-cell suspension was prepared as described in (Chuang et al. 2017) and (Denny et al. 2016). Pri-

mary tumors and metastases were dissociated using a digestion buffer (DMEM/F12, 5mMHEPES, DNase, Collagenase IV, Dispase,

Trypsin-EDTA) and incubated at 37 �C for 30 min. After dissociation, the samples were quenched with twice the volume of cold

quench solution (L-15 medium, FBS, DNase). The cells were then filtered through a 40um cell strainer, spun down at 1000rpm for

5min, resuspended in 2mL ACK Lysing Buffer, and incubated at room temperature for 1-2min. Lysis was then stoppedwith the addi-

tion of 10mLDMEM/F12 followed by the spinning down and resuspending of the samples in 1mL FACS buffer. Cells within the pleural

fluid were collected immediately after euthanasia by making a small incision in the ventral aspect of the diaphragm followed by intro-

duction of 1 ml of PBS. Cells were stained with antibodies to CD45 (30-F11, Biolegend Cat#103112), CD31 (390, Biolegend

Cat#102410), F4/80 (BM8, Biolegend Cat#123116), CD11b (Biolegend Cat#101212) and Ter119 (Biolegend Cat#116212) to exclude

cells from the hematopoietic and endothelial lineages. DAPI was used to stain dead cells.

Cells were then labeled by MULTI-seq (McGinnis et al. 2019) in 100ul PBS buffer containing 5ul lipid anchor (50uM) and 2.5ul of

barcode oligos (100uM) for 10 min on ice and then 6ul co-anchor (50uM) 10 min on ice. Cells were washed and resuspended with

ice-cold FACS buffer to prevent aggregation. DAPI was used to exclude dead cells. FACS Aria sorters (BD Biosciences) were

used for cell sorting. Live cancer cells were sorted based on positive expression of mCherry and mNeonGreen as well as negative

expression of hematopoietic and endothelial lineage markers (mCherry+, mNeonGreen+, CD45-, CD31-, Ter119-, F4/80-, DAPI-).

High purity of the resulting cancer cells has been confirmed in previous studies using similar fluorescent reporter systems (Caswell

et al. 2014; Chuang et al. 2017; LaFave et al. 2020). Live normal lung cells were sorted based on negative expression of mNeonGreen,

and hematopoietic and endothelial lineage markers. Datasets were further filtered for normal cells analytically via gene expression

analyses (see section below ‘‘Single-cell transcriptome processing for KP-Tracer NT data’’) and by removing cells with low editing

efficiencies (see section below ‘‘Single-cell lineage tracing preprocessing pipeline and quality control filtering’’).

Single-cell RNAseq library preparation
Single-cell RNA-seq libraries were prepared using 10x_3’_V2 kit according to the 10x user guide, except for the following modifica-

tion. After cDNA amplification, the cDNA pool is split into two fractions. Half of the cDNA pool are used for scRNA-seq library con-

struction and proceed as directed in the 10x user guide.

Target site library preparation
To prepare the Target Site libraries, the amplified cDNA libraries were further amplified with Target Site-specific primers containing

Illumina-compatible adapters and sample indices (oDYT023-oDYT038, forward:50CAAGCAGAAGACGGCATACGAGATNNNNNN

NNGTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGAATCCAGCTAGCTGTGCAGC;
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reverse:50-AATGATACGGCGACCACCGAGATCTACACNNNNNNNNTCTTTCCCTACACGACGCTCTTCCGATCT; ‘‘N’’ denotes

sample indices) using Kapa HiFi ReadyMix (Roche), as described in (Jones et al. 2020). Approximately 30 fmol of template cDNA

was used per sample, divided between four identical reactions to avoid possible PCR induced library biases. PCR products were

purified and size-selected using SPRI magnetic beads (Beckman) and quantified by BioAnalyzer (Agilent).

MULTI-seq library preparation
TheMULTI-seq libraries were prepared as described in (McGinnis et al.), using a custom protocol based on the 10x Genomics Single

Cell V2 and CITE-seq workflows. Briefly, the 10x workflow was followed up until complementary DNA amplification, where 1ml of

2.5mM MULTI-seq additive primer (oDYT039) was added to the cDNA amplification master mix. After amplification, MULTIseq bar-

code and endogenous cDNA fractions were separated using a 0.6X solid phase reversible immobilization (SPRI) size selection. To

further purify the MULTI-seq barcode, we increased the final SPRI ratio in the barcode fraction to 3.2X reaction volumes and added

1.8X reaction volumes of 100% isopropanol (Sigma-Aldrich). Eluted barcode cDNA was then quantified using QuBit before library

preparation PCR using primers oDYT040 and oDYT041-oDYT048 (95 �C, 50; 98 �C, 150; 60 �C, 300; 72 �C, 300; eight cycles; 72 �C,
10; 4 �C hold). TruSeq RPIX:

50-CAAGCAGAAGACGGCATACGAGATNNNNNNGTGACTGGAGTTCCTTGGCACCCGAGAATTCCA-30

TruSeq P5 adaptor:

50-AATGATACGGCGACCACCGAGATCTACACTCTTTCCCTACACGACGCTCTTCCGATCT-30

Following library preparation PCR, the library was size-selected by a 1.6X SPRI clean-up prior to sequencing.

Lenti_Cre_BC library preparation
The Lenti_Cre_BC library amplification protocol was adapted from the Perturb-seq protocol (Adamson et al., 2016). 4 parallel PCR

reactions were constructed containing 30ng of final scRNA-seq library as template, oDYT049, and indexed oDYT050-oDYT059,

and amplified using KapaHiFi ReadyMix according to the following PCR protocol: (1) 95C for 3 min, (2) 98C for 15 s, then 70C

for 10 s (16-24 cycles, depending on final product amount). Reactions were re-pooled during 0.8X SPRI selection, and then frag-

ments of length �390bp were quantified by bioanalyzer. Lenti_Cre_BC libraries were sequenced as spike-ins alongside the parent

RNA-seq libraries.

Sequencing
Sequencing libraries from each sample were pooled to yield approximately equal coverage per cell per sample; scRNA gene expres-

sion libraries, Target Site amplicon libraries, MULTI-seq amplicon libraries and Lenti-Cre-BC amplicon libraries were pooled in an

approximately 10:3:1:1 molar ratio for sequencing, aiming for at least 70,000 total reads per cell. The libraries were sequenced using

a custom sequencing strategy on the NovaSeq platform (Illumina) in order to read the full-length Target Site amplicons. Sample iden-

tities were read as indices (I1: 8 cycles, R1: 26 cycles, R2: 290 cycles). Only the first 98 bases per read were used for analysis in the

RNA expression libraries to mask the longer reads required to sequence the Target Sites.

QUANTIFICATION AND STATISTICAL ANALYSIS

Single-cell lineage tracing preprocessing pipeline and quality control filtering
Each cell was sequenced in four sequencing libraries: a MULTI-seq library (for identifying sample identity), a target site library (for

reconstructing phylogenies), an RNA-seq library (for measuring transcriptional states), and a Lenti-Cre-BC library (for verifying clonal

identity). First, the scRNA-seq was processed using the 10X CellRanger pipeline (version 2.1.1) with the mm10 genome build. Then,

each cell barcode identified from the 10X pipeline was assigned to a sample using the MULTI-seq library, which was processed with

the deMULTIplex R package (version 1.0.2; (McGinnis et al. 2019)). Cells identified as doublets or without a discernible MULTI-seq

label were filtered out from downstream analysis.

Next, we processed the Target Site library using the previously described Cassiopeia preprocessing pipeline (Jones et al.

2020; Quinn et al. 2021). Briefly, reads with identical cellBC and UMI were collapsed into a single, error-corrected consensus

sequence representing a single-expressed transcript. Consensus sequences were identified within a cell based on a maximum

of 10 high-quality mismatches (PHRED score greater than 30) and an edit distance less than 2 (default pipeline parameters).

UMIs within a cell reporting more than one consensus sequence were resolved by selecting the consensus sequence with

more reads. Each consensus sequence was aligned to the wild-type reference Target Site sequence using a local alignment

strategy, and the intBC and indel alleles were called from the alignment. Cells with fewer than 2 reads per UMI on average

or fewer than 10 UMIs overall were filtered out. These data are summarized in a molecule table which records the cellBC,

UMI, intBC, indel allele, read depth, and other relevant information. Cells that were assigned to Normal lung tissue via a

MULTI-seq barcode or had more than 80% of their TargetSites uncut were assigned as ‘‘Normal’’ and not used for downstream

lineage reconstruction tasks.

Lenti-Cre-BC libraries were processed using a custom pipeline combining Cassiopeia transcript collapsing, filtering, and quanti-

fication and a probabilistic assignment strategy based on the Perturb-seq gRNA calling pipeline (Adamson et al. 2016). First,

sequencing reads were collapsed based on a maximum sequence edit distance of 2 and 3 high-quality sequences mismatches
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and then cells with fewer than 2 average reads per UMI or 2 UMIs overall were filtered out. Then, Lenti-Cre-BC sequencing readswere

compared to the reference sequence and barcode identities were extracted and error-corrected by comparing each extracted bar-

code to a whitelist of Lenti-Cre-BC sequences, allowing for an edit distance of 3. Then, the count distributions for each unique Lenti-

Cre-BCwere inspected to remove barcodes that represented background noise. Next, a Lenti-Cre-BC coverage matrix was formed,

summarizing the ratio between reads and number of UMIs for each barcode in each cell. Cell coverages were normalized to sum to

the median number of coverages across the matrix and log2-normalized. Finally, with this matrix we adapted the Perturb-seq gRNA

calling pipeline to assign barcode identity to cells (Adamson et al. 2016). To do so, we fit a Guassian kernel density function to the

coverage distribution for each barcode and then determined a threshold separating ‘‘foreground’’ from ‘‘background’’ based on the

relative extrema of the distribution (after removing the 99th percentile of the coverage distribution). Cells whose coverage values fell

above the threshold were assigned that particular Lenti-Cre-BC. Cells that received more than one assignment or no assignment at

all were marked as ambiguous.

After pre-processing each of these libraries, we called clonal populations, created character matrices, and reconstructed

phylogenies for each clonal population (see sections below ‘‘Tree Reconstruction with Cassiopeia’’ and ‘‘Calling clonal

populations and creating character matrices’’). In this, we removed cells that contained few edited sites as this could indicate

normal cell contamination (i.e. inactivity of Cas9) and identified consensus sets of intBCs per mES Clone (see section below

‘‘Creating a consensus intBC set for mESC clones’’) that were used for tree reconstruction. After tree reconstruction, we

used the Lenti-Cre-BC data to remove cells within each tumor that contained strong evidence of different clonal origin

(see section below ‘‘Cell Filtering with Lenti-Cre-BC’’). Finally, we computed important clone-level quality-control statistics

used for identifying clones with sufficient information for phylodynamic analysis (see section below ‘‘Tree Quality Control for

Fitness Inference’’).

Across all three datasets (KP, KPL and KPA), this pipeline left us with 72,328 cells with high-quality Target Site information.

Calling clonal populations and creating character matrices
In this study, each clonal population corresponded to a primary tumor or metastatic family. Tumors were identified with two

approaches: first, by deconvolution with MULTI-seq (and filtering with Lenti-Cre-BC information; see below in section ‘‘Cell

Filtering with Lenti-Cre-BC’’); and second, by separating cells based on differing intBC sets. In the second approach, we used

Cassiopeia to identify non-overlapping intBC sets and classify cells using the ‘‘call-lineages’’ command-line tool. Once clonal

populations were identified, consensus intBC sets were identified (see ‘‘Creating a consensus intBC set for mESC clones’’ below).

All summarized molecular information for a given cell (cellBC, number of UMI, intBC, indel allele, read depth, etc) along with the

assigned clonal identity were summarized in an allele table. Then, character matrices were formed for each clonal population,

summarizing mutation information across the N cells in a population and their M cut-sites. Characters (i.e., cut-sites) with more

than 80% missing information or containing a mutation that was reported in greater than 98% of cells were filtered out for

downstream tree reconstruction.

Creating a consensus intBC set for mESC clones
Given that eachmouse is generated from a specificmESC clone, we expected tumors from eachmousewouldmaintain the same set

of intBCs as the parental mESC clone. To identify this consensus set of intBCs, we stratified tumors based onwhichmESC clone they

originated from, and within these groups computed the proportion of tumors that reported a given intBC in at least 10% of cells. We

determined cutoffs separating reproducible intBCs from irreproducible intBCs for each mES clone separately. These consensus

intBC sets were used for downstream reconstruction of phylogenies.

Tree Reconstruction with Cassiopeia
Trees for each clonal population (see ‘‘Calling clonal populations and creating character matrices’’ above) were reconstructed with

Cassiopeia-Hybrid (Jones et al. 2020). Briefly, Cassiopeia-Hybrid infers phylogenies by first splitting cells into clusters using a

‘‘greedy’’ criterion (Cassiopeia-Greedy) until a user-defined criteria is met at which point each cluster of cells is reconstructed using

a near-optimal Steiner-Tree maximum-parsimony algorithm (Cassiopeia-ILP). We compared the parsimony of trees generated using

two different greedy criterions - both criterions employed work by first identifying a mutation and subsequently splitting cells based

on whether or not this mutation was observed in a cell. First, we used the original Cassiopeia-Greedy criterion, which identifies mu-

tations to split cells on by using the frequency and probability of mutations. Second we applied a compatibility-based criterion which

prioritizes mutations based on character-compatibility (see section ‘‘Compatibility-based greedy heuristic for tree reconstruction’’

below). We proceeded with the more parsimonious tree. In one specific case, (3515_Lkb1_T1), we observed that the lineage tracing

alleles were not adequately captured with phylogenetic inference of the primary tumor alone. To handle this, we rebuilt the tree of the

tumor-metastasis family and then subset the phylogeny to consist of only the cells from the primary tumor - resulting in a clonal phy-

logeny that appeared to be better supported by allelic information.

Inmost inferences, we used indel priors computedwith Cassiopeia to select mutations with a Cassiopeia-Greedy algorithm as well

as weight edges during the Steiner-Tree search with Cassiopeia-ILP. Generally, we used an LCA-based cutoff to transition between

Cassiopeia-Greedy and Cassiopeia-ILP as previously described (Quinn et al. 2021). Clone-specific parameters are reported in

Table S1.
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Compatibility-based greedy heuristic for tree reconstruction
A rare, but simple case for phylogenetic inference is that of perfect phylogeny in which every character (or cut-site) is binary (that is,

can be cut or uncut) and mutates at most one time. In this regime, every pair of characters is ‘‘compatible’’ – that is, given two binary

characters i and j, the sets of cells that report a character i as mutated are non-overlapping with the set of cells that report character j

as mutated, or one set of cells is completely contained within the other.

In this approach, we used a heuristic, called the compatibility index, to measure how far a pair of characters is from

compatibility. To do so, we first ‘‘binarized’’ our character matrices by treating each unique (cut-site, mutation) pair as a binary

character. (To note this binarization procedure is possible because of the irreversibility of Cas9 mutations and discussed in our

previous work (Jones et al. 2020).) Then, we found the character that had deviated the least from perfect phylogeny, that is

violated compatibility the least. To find this character, we first built a directed ‘‘compatibility-graph’’, where individual nodes

represented characters and edges between nodes represented deviations from compatibility. Each edge from character i to

j was weighted as follows:

wi;j = � nj log
�
pj

�

where i and j are two incompatible characters, nj is the numbe
r of cells reporting character j, and pj is the prior probability of

character jmutating. For the purposes of building this compatibility matrix, missing data was ignored (this is, no node in the graph

corresponded to a missing state). A character c’ to split cells with was identified by minimizing the sum of weights emitted from

the node:

c0 = argminc˛X

X
j˛OutðcÞ

wc;j
where Out(c) denotes the set of edges with c as a source. This p
rocess was repeated until the tree was resolved completely, or a

criterion was reached as in Cassiopeia-Hybrid.

Cell filtering with Lenti-Cre-BC
After performing tree reconstruction for each clonal population, leaves were annotated with Lenti-Cre-BC information and evaluated

manually for filtering. Specifically, in tumors with adequate Lenti-Cre-BC information, we identified subclades (defined here as clades

that joined directly to the root) that clearly had divergent Lenti-Cre-BC information. This combined Lenti-Cre-BC and lineage analysis

helped minimize the influence of lenti-Cre-BC dropout in single-cell experiments. These subclades were subsequently removed and

cells were filtered out from the phylogenetic analysis. In one case (3513_NT_T4 and 3513_NT_T5), two tumor populations were split

from a parental tumor (3513_NT_N2), reconstructed, and used in downstream analyses.

CNV analysis

Chromosomal copy number variations (CNV) were inferred with the InferCNV R package (version 1.2.1), which predicts CNVs based

on single-cell gene expression data. InferCNV was run in ‘subclusters’ analysis mode using ‘random_trees’ as the subclustering

method. Genes with less than one cell were filtered with the ‘min_cells_per_gene’ option, and no clipping was performed on centered

values (‘max_centered_threshold’ set to ‘NA’). The cutoff for the minimum average read count per gene among reference cells was

set to 0.1, per software recommendation for 10x data. CNV prediction was performed with the ‘i6’ Hidden Markov Model, whose

output CNV states were filtered with the included Bayesian mixture model with a threshold of 0.2 to find the most confident

CNVs. All other options were set to their default values.

Each tumor sample was processed independently with normal lung cells (identified solely from theMULTI-seq deconvolution pipe-

line) as the reference cells. The number of CNVs for each cell was computed by counting the number of CNV regions predicted. We

filtered cells with CNV counts greater than three standard deviations away from the mean of each tumor, in addition to cells with

greater than or equal to 20 predicted CNVs. When comparing CNV counts of cells in expansions against those of cells in non-expan-

sions, statistical significance was computed with a one-sided permutation test and the Mann-Whitney U-test, both of which yielded

the same results.

We applied hierarchical clustering with a euclidean distance metric and the ‘‘ward’’ linkage to identify CNV clusters of cells within

each tumor. For each clustering induced by cutting the hierarchical clustering dendrogram at different heights, we computed the

probability that a cell and its nearest neighbor on the Cassiopeia tree were in the same hierarchical cluster (‘‘nearest neighbor prob-

ability’’). These clusters ranged frommost coarse-grained (low cutoff height) to the most fine-grained (high cutoff height). When there

were multiple nearest neighbors, pseudocounts were used by taking the fraction of nearest neighbors that were in the same cluster.

We performed nonparametric Permutation Tests for each unique clustering by shuffling the cluster assignments of the cells and

computing the nearest neighbor probability using these assignments.

Tree Quality Control for Fitness Inference

Trees were subjected to quality control before identifying subclones under positive selection and single-cell fitness inference. We

employed two quality control metrics: first, a measure of subclonal diversity known as ‘‘percent unique indel states’’, defined as

the proportion of cells that reported a unique set of character states (i.e., mutations). Second, we also filter lineage trees based

on the level of ‘‘unexhausted target sites’’ defined as the proportion of characters (i.e., specific cut sites) that were not dominated
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by a single mutation (i.e, more than 98% of cells contained the samemutation). These metrics describe the diversity and depth of the

lineage trees, and enable filtering out tumors with poor lineage tracing quality (i.e., lineage tracing capacity became saturated too

early during tumor development). Using these two metrics, we filtered out tumors that had less than 10% unique indel states or

less than 20% unexhausted target sites. Additionally, tumors with too few cells recovered (fewer than 100 cells) were ignored for

this analysis because of a lack of power to confidently quantify subclonal behavior.

Identifying subclonal selection (i.e., expansions)

Subclones undergoing positive selection were identified by comparing the number of cells contained in the subclone to its direct ‘‘sis-

ters’’ (i.e. branches emanating directly from the parent of a subclone of interest) and computing a probability of this observation with a

coalescent model. Specifically, consider a node v in a particular tree with k children stored in the set C. Let nc denote the number of

leaves below a particular node c (and observe that N = nv=c Cnc). Under the coalescent model, we can compute a probability indi-

cating how likely a subclone c under v would have exactly nc leaves given v had N total leaves as follows:

pN;kðncÞ =

�
N � nc � 1
k � 2

�
�
N � 1
k � 1

�

Finally, we computed the probability that a subclone c under v would have at least nc leaves given v had N total leaves is:

bpN;kðncÞ =
XN� k + 1

n = nc

pN;kðnÞ

Nodes with probabilities bpN;kðncÞ< 0:01, at least a depth of 1 from the root, and containing subclades with at least 15% of the total

tree population were annotated as undergoing an ‘‘expansion’’. In the analysis presented in this study, we additionally filtered out

nodes annotated as ‘‘expanding’’ if they contained another node in their subtree that was also expanding. Expansion proportions

were calculated as the fraction of the tree consisting of cells residing in any subclade called as ‘‘expanding’’.

Inferring single-cell fitness

To compute single-cell fitness, we used the ‘‘infer_fitness’’ function from the jungle package (publicly available at https://github.com/

felixhorns/jungle) which implements a previously described probabilistic method for inferring relative fitness coefficients between

samples in a clonal population (Neher et al. 2014). Because some trees contained exhausted lineages (i.e., those in which all target

sites were saturated with edits), after filtering out trees that did not pass quality control (see section ‘‘Tree quality control for fitness

inference’’ above), we pre-processed branch lengths on each phylogeny such that branches had a length of 0 if no mutations sepa-

rated nodes and 1 if not. In essence, this collapses uninformative edges in the fitness inference and helps control for lineage exhaus-

tion. After this procedure, we were left with fitness estimates for each leaf in a phylogeny, normalized to other cells within the

phylogeny.

Tumor fitness differential expression

Genes differentially expressed along the fitness continuumwithin each tumor were identified with a linear regression approach. Spe-

cifically, given a cell i, we can model the expression of some gene j according to the cell’s fitness score fi as follows:

logð1 + ei;jÞ� fi + size factori
Where eij is the count-normalized expression of gene j in cell i
 (we used the median number of UMI counts across the dataset

to normalize expression level) and size_factori is the number of genes detected in the cell. Only genes appearing in more than

10 cells were retained for differential expression analysis. Linear models were fit using Julia’s GLM package (v1.3.7).

Significances were computed using a Likelihood Ratio Test, comparing the model above to a model only using the size_factor

as a predictor. P-values were FDR corrected using the Benjamini-Hochberg procedure (Benjamini and Hochberg 1995).

Log2fold-changes were computed by comparing the average expression of a gene in the top vs bottom 10th percentile of

fitness scores.

Meta-analysis and derivation of the FitnessSignature

The transcriptional FitnessSignature was derived from the results of individual tumor fitness differential expressions with a majority-

votemeta-analysis. This approach ranks genes based on the number of times that a gene is differentially expressed (FDR < 0.05 and |

log2FC| > log2(1.5)) and the consistency of its direction. We used theMetaVolanoR R package (version 1.0.1) to perform this majority-

vote analysis, which computed both of these values. We identified consistently differentially expressed genes for our transcriptional

FitnessSignature if a gene appeared to show up at least 2 times in the same direction, and if the ratio between frequency and con-

sistency was greater than 0.5.

Fitness module identification

We determined transcriptional fitness gene modules using the Hotspot package (version 0.9.0; (DeTomaso and Yosef 2021)). To do

so, we first subset our processed single-cell expression matrix (see section below ‘‘Single-cell transcriptome analysis for KP-Tracer

data’’) to contain only the 1,183 genes in the FitnessSignature that were positively associated with fitness. Then, using Hotspot we

identified fitness-related genes that were significantly autocorrelated with the scVI latent space using the ‘‘danb’’ observation model
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and 211 neighbors (the square-root of the number of cells in the expression matrix). After this procedure, genes with an FDR of less

than 0.05 were retained for downstream clustering. We then computed pairwise local autocorrelations with Hotspot and clustered

genes using these pairwise statistics with the ‘‘create_modules’’ function inHotspot (minimum gene threshold of 100, FDR threshold

of 0.05, core_only=False). This procedure identified three modules that were used for downstream analysis.

Single-cell transcriptome processing for KP-Tracer NT data

The scRNA-seq was processed using the 10X CellRanger pipeline (version 2.1.1) with the mm10 genome build. Cells were

assigned to a sample using the MULTI-seq pipeline described above (see section ‘‘Single-cell preprocessing pipeline’’). After

quantification, informative genes were identified using the Fano filtering process implemented in VISION (DeTomaso et al.

2019), and raw counts were batch-corrected (using the batch-harvest data, indicating when a batch of mice were sacrificed as

the batch variable) and projected into a shared latent space of 10 dimensions with scVI (Gayoso et al., 2022; Lopez et al.,

2018). Cells were initially clustered with the Leiden algorithm as implemented in Scanpy (Wolf et al. 2018; Traag et al. 2019),

and two clusters dominated by cells annotated as normal and cells that could not be confidently mapped to a tumor via

MULTI-seq or Lenti-Cre-BC analysis (see section ‘‘Single-cell preprocessing pipeline’’ and ‘‘Cell Filtering with Lenti-Cre-BC’’

above) were removed from downstream analysis. Clusters were then manually re-clustered to obtain segmentations that aligned

with gene expression patterns. After this process, we were left with a total of high-quality 58,022 cells with single-cell transcrip-

tomic profiles from KP mouse tumors. Single-cell counts were normalized by the median UMI count across cells and logged to

obtain log-normalized data. Gene markers for each Leiden cluster were identified using the Wilcox rank-sums test on the log-

normalized gene counts with the Scanpy package (Wolf et al. 2018).

Integration of normal lung epithelium transcriptomes

scRNA-seq data of cells obtained from various tissues in sample L46 were quantified using the 10X CellRanger pipeline (version

2.1.1) with the mm10 genome build. Cells were assigned to a sample (one of 4 tissues) using the CellRanger multi procedure. After

quantification and sample assignment, cells with fewer than 200 UMIs and genes appearing in fewer than 1% of cells were filtered

out. This left us with 14,424 high-quality cells. A low-dimensional embedding was inferred using scVI on the dataset with the 4000

most highly-variable genes (using the ‘‘seurat_v3’’ flavor of Scanpy’s highly_variable_genes function). Transcriptional clusters

were identified using the Leiden community detection algorithm. One cluster of 329 cells consisted of normal lung cells and ex-

pressed gene markers Nkx2-1, Sftpc, and Scgb1a1; we isolated and annotated this cluster as normal lung epithelial cells (primarily

AT2 and club cells).

This dataset of 329 normal lung epithelial cells (isolated from the L46 sample, as described above) was integrated into the scRNA-

seq dataset of KP tumors (see section ‘‘Single-cell transcriptome processing for KP-Tracer NT data’’) using scVI (Gayoso et al., 2022;

Lopez et al., 2018). Specifically, we used scVI to batch-correct these two datasets and project all cells into a common coordinate

system. Then, we visualized this scVI batch-corrected embedding with UMAP.

Differential expression analysis of Chuang et al

TPM-normalized RNA-seq data were downloaded from GEO accession GSE84447. Samples were split into early and late-stage tu-

mor groups based on the author annotations: tumors annotated with ‘‘KPT-E’’ were assigned to the early stage group and tumors

with ‘‘TnonMet’’ or ‘‘TMet’’ annotationswere assigned to the late group. Then, we log-normalized the TPMcounts and used the limma

R package (version 3.36.3) to infer differentially expressed genes with the ‘‘eBayes’’ function. Genes passing an FDR threshold of

0.05 and log2-fold-change threshold of 1 (in either direction) were called differentially expressed and used for comparison with

the FitnessSignature described in this study.

FitnessSignature analysis of Marjanovic et al

Raw expression count matrices were downloaded directly from GEO, accession number GSE152607. Gene counts were normalized

to transcript length, to account for read depth artifacts in the Smart-Seq2 protocol. VISION (DeTomaso et al. 2019) was used to

compute FitnessSignature scores (using the FitnessSignature gene set described in our study) for each cell in the dataset and scores

were averaged within time points of KP mice.

Survival analysis with TCGA lung adenocarcinoma tumors

The fitness signature genes including 1183 up-regulated genes and 1027 down-regulated genes from mice experiments were con-

verted to corresponding genes from the H. sapiens genome (build hg19), resulting in 1126 up- and 970 down-regulated human

genes, respectively. FitnessSignature with only up-related genes was denoted as FSU, FitnessSignature with only down-related

genes was denoted as FSD. TCGA Lung adenocarcinoma cohort with RNAseq data (n=495) were stratified into FSU-High,

FSU-Low, FSD-High, and FSD-Low according to median expression of sum of FitnessSignature genes, then, patients harboring

genes with FSU-High and FSD-Low formed a group, patients containing FSU-Low and FSD-High gene expression formed another

group. Subsequently, these two groups were used for survival analysis using the survival package in R (version 3.2.11). The

survival analysis was invoked with the call ‘‘survfit(Surv(Time, Event) � Group)’’ where ‘‘Group’’ is the FitnessSignature-based

stratification. Kaplan–Meier curve is shown with a log-rank statistical test. For fitness gene module 1, 2, and 3 analyses, patients

were divided into module gene expression of High and Low based on the median of the sum of gene expression, followed by

survival analysis.

Fitness Module Enrichment

Each of the three fitness gene module scores (computed with VISION) were normalized to the range [0, 1] across all NT cells. All NT

cells in non-expansions were defined as the background cells, and the background module scores were calculated by averaging the
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normalized module scores of these cells. Additionally, the module scores of cells in each expansion were averaged to obtain the

psuedo-bulk module score for each expansion. These module scores were divided by the background module scores, yielding

the module enrichment score (i.e. fold-change versus background) per fitness module. These scores were plotted on a personality

plot for visualization. Every expansion was assigned (non-exclusively) to the three fitness modules using a permutation test to test

whether the cells in the expansion exhibited a significant increase in fitness module score compared to non-expanding background

cells (p < 0.05).

Calculation of single-cell and Leiden cluster EffectivePlasticity

EffectivePlasticity for each tumor was computed by first calculating a normalized parsimony score for the tumor tree, with respect to

the Leiden cluster identities at the leaves, using the Fitch-Hartigan algorithm (Fitch 1971; Hartigan 1973). Briefly, this procedure be-

gins by assigning cluster identities to the leaves of the tree, and then calculates the minimum number of times a transition between

cluster identities must have happened ancestrally in order to account for the pattern observed at the leaves. To compare scores

across trees, we normalize these parsimony scores by the number of edges in the tree, thus giving the EffectivePlasticity score.

In all analyses, we filtered out cells that were part of Leiden clusters that were represented in less than 2.5% of the total size of

the tree.

In order to generate single-cell EffectivePlasticity (‘‘scEffectivePlasticity’’), we computed the EffectivePlasticity for each subtree

rooted at a node on the path from the root to a leaf and averaged these scores together. This score thus represents the average

EffectivePlasticity of every subtree that contains a single cell.

To generate average EffectivePlasticity for each Leiden cluster, we first stratified cells in each tumor according to the Leiden clus-

ter. Then, we averaged together scores within each tumor for each Leiden cluster, thus providing a distribution of EffectivePlasticity

for each Leiden cluster.

Calculation of the Allelic EffectivePlasticity score

The Allelic EffectivePlasticity score provided a ‘‘tree-agnostic’’ measurement of a cell’s effective plasticity. Qualitatively, the score

measures the proportion of cells that are found in a different Leiden cluster than their closest relative (as determined by the modified

edit distance between two cells’ character states; see section ‘‘Allelic Coupling’’ for the definition of this distancemetric). Importantly,

if a cell has more than one closest relative, each of their votes are normalized by the number of equally close relatives this cell has.

More formally, the single-cell Allelic EffectivePlasticity was defined as:

aðiÞ =
1

jKj
X
k˛K

IðleidenðkÞ = = leidenðiÞÞ
WhereK indicates the set of a cell’s closest relatives, asmeasured
 bymodified edit distance, leiden(i) indicates the Leiden cluster that

cell i resides in, and I()is an indicator function that is 1 if the two Leiden clusters are the same and 0 otherwise. The Allelic

EffectivePlasticity of a tumor is the average of these scores:

AðtumorÞ =
1

jLj
X
l˛ L

aðlÞ

Calculation of the L2 EffectivePlasticity score

The L2 EffectivePlasticity score served as an alternative tree-based score that accounted for random noise at the boundary

between two Leiden clusters, as opposed to treating each Leiden Cluster as a point. As with the EffectivePlasticity score,

we first found nearest-neighbors of each cell i using the phylogenies and considered neighbors found in a different Leiden clus-

ter than i. Yet, in contrast to the EffectivePlasticity score, we distinctly used an L2-distance in the 10 dimensional scVI latent

space to obtain a measure of how distinct the neighbor was. Mathematically, the single-cell L2 EffectivePlasticity score was

defined as:

l2ðiÞ =
1

jKj
X
k˛K

jjxi � xk jj2
Where K indicates the set of a cell’s closest relatives, as found wit
h the phylogeny, and xi indicates the 10-dimensional embedding of

cell i’s single-cell expression profile in scVI space. The L2 EffectivePlasticity of a tumor was defined as the average across all leaves in

the tumor.

Evolutionary Coupling

Evolutionary Coupling is the normalized phylogenetic distance between any pair of variables on a tree. Mathematically, given

two states M and K that can be used to label a subset of the leaves of the tree, we compute the average distance between

these states:

DðM;KÞ =
1

nmnk

X
m ˛ fMg; k ˛ ðKg

dT ðm; kÞ
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where nM is the number of leaves with state M, {M} denotes the set of cells in set M, and dT(i, j) denotes the phylogenetic distance

between leaves. There are multiple ways to score dT(i, j), and here we used the number of mutated edges for our analysis (i.e., the

number of edges separating two leaves i and j that carried at least one mutation). To normalize these distances, we compare D(M, K)

to a random background generated by shuffling the leaf assignments 2000 times. Then, to obtain background-normalized scores, we

Z-normalize to the random distribution DR:

D0ðM;KÞ =
DðM;KÞ � E½DRðM;KÞ�

SD½DRðM;KÞ�
This score is obtained for all pairs of states in a tumor that pass a 2.5% proportion threshold (i.e., we filter out cells in states that fall

below this threshold). Then, from the matrix of all background-normalized phylogenetic distances, P (such that PM,K is equal to

D’(M,K)), we compute the Evolutionary Couplings between two states M and K by Z-normalizing P:

EðM;KÞ =
PM;K � E½P�

SD½P�
Evolutionary Couplings presented in Figures 5B and 5D are normalized as:

bEðM;KÞ = exp

�
� EðM;KÞ

maxðabsðEÞÞ
�

Where E denotes all the Evolutionary Couplings between states i
n a given tumor.

Allelic Coupling

We usedmodified edit distances between cells to compute an Allelic Coupling score that could be used to assess consistency of the

Evolutionary Coupling results. Here, we used a modified edit distance, h’(ai, bi), that scored the distance between sample a and b at

the ith character:

The allelic distance between two samples a and b is
P

i ˛ Xh
0ðai;biÞ. We used these distances instead of phylogenetic distances to

compute the coupling statistic described in the section above entitled ‘‘Evolutionary Coupling’’ and called this new coupling statistic

‘‘Allelic Coupling’’.

K-nearest-neighbor (KNN) Coupling

K-nearest-neighbor (KNN) coupling was computed by using dT as the distance to the kth neighbor in the Evolutionary Coupling sta-

tistic. We used the same phylogenetic distance described in the section entitled ‘‘Evolutionary Coupling’’ to compute the kth neighbor

and used k=10 for the analysis.

Fate clustering

To identify separate fates in the KP-Tracer dataset, we first computed Evolutionary Couplings in each tumor for all pairs of states. To

remove noise intrinsic to the clustering, we filtered out clusters that accounted for less than 2.5% of the tumor. As a phylogenetic

distance metric, we used the number of mutated edges (i.e., any edge that contained at least one mutation was given a weight of

1 and otherwise the edge was weighted as 0). Before computing Evolutionary Couplings, we preprocessed the lineages such that

each leaves with the same Leiden cluster were grouped together (see section entitled ‘‘Preprocessing lineages with respect to

states’’).

After calculating the Evolutionary Coupling for all pairs of states within each tumor, we concatenated all vectors of Evolutionary

Coupling together into a matrix. We additionally converted Evolutionary Couplings to similarities by exponentiating these values

(i.e, E’(M, K) = exp(-E(M,K))). As additional features for this clustering, we also added Leiden cluster proportions to each tumor’s vec-

tor of couplings. Thenwe Z-normalized across features to compare tumors and clustered this transformedmatrix using a hierarchical

clustering approach in the python scipy package (version 1.6.1). We used a Euclidean metric and the ‘‘ward’’ linkage method. We

identified three clusters from this hierarchical clustering, corresponding to our three Fate Clusters. These three Fate Clusters

were visualized using Uniform Manifold Approximation and Projection (UMAP) on the Evolutionary Coupling and Leiden cluster pro-

portion concatenated matrix. Important couplings were identified using Principal Component Analysis on the same Evolutionary

Coupling concatenated matrix.

Preprocessing lineages with respect to states

In some lineages, we observed that polytomies (or non-bifurcating) subclades were created at the very bottom of the tree due to the

saturation of target site edits. Because this could artificially appear to make cellular states more closely related than they actually

were, we took a conservative approach to making conclusions about cellular relationships between leaves in such polytomies. Spe-

cifically, we first assigned states from a state space S to each leaf in a tree according to some function sðlÞ / s ˛ S for all l leaves in

the tree. Then, for all polytomies that contained at least unique states ormore, we created extra splits in the tree for each unique state.

More formally:
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Aggregating evolutionary coupling across fate cluster

To create a consensus Evolutionary Coupling map across the tumors in a Fate Cluster, we first computed the average Evolutionary

Coupling between all pairs of states in a tumor as described previously. Then, we computed an average Evolutionary Coupling for

each pair of states, normalizing by the number of tumors that this pair appeared in above the requisite 2.5% threshold. Critically,

we removed patterns that were driven by a small proportion of cells, we only considered states that appeared in at least 2.5% of

the total number of cells across all tumors in a Fate Cluster.

Phylotime

Phylotime was defined as the distance to the first ancestor that could have been a particular state. To approximate the Phylotime in

this study, we defined the initial AT2-like state (Leiden cluster 4) as the ground state, and inferred the sets of states for each ancestor

with the Fitch-Hartigan bottom-up algorithm (Fitch 1971; Hartigan 1973). Then, in each tumor, we computed the phylogenetic dis-

tance separating each cell from its closest ancestor that could have been an AT2-like cell, as determined with the Fitch-Hartigan bot-

tom-up algorithm. Phylogenetic distances were defined as the number of non-zero-length branches (though we compare the con-

sistency of Phylotime to a distance metric that uses the number of mutations along each edge in Figures S5J and S5K). In this way,

Phylotime is proportional to the number of generations elapsed since the more recent ancestral node that, under a maximum-parsi-

mony approach, could have been an AT2-like cell. Here, the tree structure is advantageous in modeling divergence times from the

AT2-like state because it can account for homoplasy (i.e., the same mutation occurring independently) and convergent phenotypic

evolution events (i.e., the same transcriptomic state being reached separately, as opposed to pseudotime statistics estimated from

single-cell transcriptomes (Trapnell et al., 2014) events. Thus, it is preferable, in principle, to comparing the mutation states directly

between a leaf and all AT2-like cells. Phylotime within each tumor was normalized to a 0-1 scale. Once every tumor was analyzed this

way, Phylotime across tumors was merged by performing an average-based smoothing across the transcriptional space: specif-

ically, for each cell, we found the 5 closest neighbors in transcriptional space (in the low-dimensional scVI latent space) and averaged

Phylotimes within this neighborhood. After integrating together Phylotime in this manner, the final distribution across tumors was

normalized once again to a 0-1 scale.

Phylotime differential expression

Genes associated with Phylotime in each Fate Cluster were identified using the Tradeseq package (Van den Berge et al. 2020). Spe-

cifically, for each Fate Cluster, lowly-expressed geneswere filtered if they were detected in fewer than 10%of cells and high-variance

genes were identified with the Fano filtering procedure implemented in VISION (DeTomaso et al. 2019). Then, in each cluster, expres-

sion models were fitted with the ‘‘fitGAM’’ function and genes associated with a specific segment of Phylotime were identified with

the ‘‘associationTest’’ function. P-values were FDR corrected using the Benjamini-Hochberg procedure (Benjamini and Hochberg

1995), and significant genes were retained if they had an FDR below 0.05 and a mean log2-fold-change above 0.5. Smoothed
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expression profiles were predicted with the Tradeseq package using the models fit from the fitGAM procedure and genes were sub-

sequently clustered into those expressed early and late. Gene set enrichment analysis was performed using the enrichR R package

(version 3.0) after converting gene names frommm10 toGRCh38.We used the Biological Process gene ontology, ChEA, andMsigDB

Hallmark gene sets. Informative genes were manually selected from the set of genes passing the significance and effect-size thresh-

olds, and manually clustered for display in Figure 5.

Integrating transcriptomes of KP-Lkb1 and KP-Apc data

The scRNA-seq data was processed using the 10X CellRanger pipeline (version 2.1.1) with the mm10 genome build. Cells were as-

signed to a sample using theMULTI-seq pipeline as described above (see section ‘‘Single-cell preprocessing pipeline’’) to form a raw

count matrix consisting of cells from KP, KPL, or KPAmice. Cells with fewer than 200 genes detected, greater than 15%of mitochon-

drial reads, or greater than 7000 genes detected were filtered out. Cells were batch-corrected and projected into 20 latent dimen-

sions using scVI (Gayoso et al., 2022; Lopez et al., 2018) with 2 hidden layers and the library batch as a batch covariate on the

top 4000 most variable genes, as detected with Scanpy’s ‘‘highly_variable_genes’’ function with the ‘‘seruat_v3’’ flavor (Wolf, An-

gerer, and Theis 2018). Clusters were identified with the Leiden algorithm (Traag,Waltman, and van Eck 2019) withmanual parameter

selection to obtain an acceptable resolution. All normal cells and seven additional clusters with high proportions of normally-anno-

tated cells (as with MULTI-seq or via the lineage-tracing data) were filtered out for downstream analysis (a total of 2,209 cells in the

entire dataset).

To perform label transfer from the KP-Tracer dataset, we first labeled all KP cells in the integrated dataset with previous annota-

tions and labeled all new cells with ‘‘Unknown’’. Then, we used scANVI (Xu et al. 2021) to predict labels of cells from KPL and KPA

mice using 40 latent dimensions, 2 hidden layers, and a dropout rate of 0.2. Upon inspecting predictions, we elected to keep pre-

dictions made by scANVI for the majority of cells, with the exception of 5 new Leiden clusters identified by clustering the scVI latent

space. Additionally, we elected to merge one new Leiden cluster with the Pre-EMT state because key gene expression markers

across these two states were consistent. After this process, we were left with a total of 104,197 high-quality cell transcriptomes.

Differential expression analysis of Pre-EMT state

The single-cell RNA count matrix was first count-normalized to the median number of UMI counts across cells and log-transformed.

Then, cells assigned to the Pre-EMT state were separated into three non-overlapping sets according to their genotype (KP, KPL, or

KPA). Differentially expressed genes in the KPL subset of cells in the Pre-EMT cluster were identified by comparing these cells to all

other cells with Scanpy using a t-test on log-normalized count matrix with the top 5000 most variable genes. Highlighted genes were

selected from the set genes passing an FDR cutoff of 0.05 and a log2FC cutoff of 1.

Evolutionary Trajectory Analysis of KPL and KPA Tumors

The evolutionary trajectories from KPL and KPAmice were analyzed identically to the KP tumors as described in the previous section

entitled ‘‘Fate Clustering’’. Briefly, each tumor was described as a vector of Leiden cluster proportions and exponentiated Evolu-

tionary Couplings (i.e, E’(M, K) = exp(-E(M,K))). Vectors were concatenated together and Z-normalized across features. The resulting

matrix was decomposed and analyzed using Principal Component Analysis (PCA) and informative features were identified by eval-

uating the features with highest principal component loadings.

Evolutionary Coupling of 3724_NT_T1 Tumor-Metastasis Family

Using the tumor-metastasis family tree for 3724_NT_T1 and associated metastases, we computed the Evolutionary Couplings be-

tween each microdissected piece of the primary tumor (T1-15) and each metastasis (the statistic is described in the section entitled

‘‘Evolutionary Coupling’’). Normalized Evolutionary Couplings (E) were computed as described previously.

Phylogenetic distances on Tumor-Metastasis Family trees

In each of the tumor-metastasis families (defined as a tumor containing both a primary tumor and a large enough metastatic popu-

lation) analyzed in Figures 7 andS7, we first reconstructed trees encompassing all cells in the primary andmetastatic tumors (referred

to as a ‘‘tumor-metastasis family’’ tree). Then, we stratified cells in the primary tumor by the expansions called with our expansion-

calling statistic (see above, ‘‘Identifying subclonal selection’’). If a cell was not part of an expansion, it was labeled as ‘‘non-expan-

sion’’. Then, for each cell in ametastatic tumor, we computed the averagemodified phylogenetic distance to all primary tumor cells in

the tumor-metastasis family tree. The modified phylogenetic distance was computed as the sum of branch lengths, where each

branch length was defined as the number of mutations separating each node from one another (as inferred using Camin-Sokal parsi-

mony - i.e., irreversibility of mutations).

Transcriptional distances on Tumor-Metastasis Family trees

Tumor-metastasis family trees were inferred and stratified as described above (see ‘‘Phylogenetic distances on Tumor-Metastasis

Family trees’’) and Euclidean distance was used to measure transcriptomic differences between metastatic cells and primary tumor

subpopulations.

Distribution comparisons and statistical significance

All statistical tests comparing the distribution of continuous values are indicated in the appropriate figure legend. Mann-Whitney U

tests were performed using the ranksums function in the scipy.stats python package with sidedness specified in the figure legend. All

boxplots present the quartiles of the distribution and whiskers show the rest of the distribution. Outliers of boxplots are determined

using as being 1.5x the inter-quantile range.
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Supplemental figures

Figure S1. KP-Tracer mouse genetic components, validation, and quality control, related to Figure 1

(A) The piggyBac transposon-based lineage-tracing vector libraries used to engineer the KP-Tracer mice contained (1) a triple-guideRNA cassette and (2) a target

site library cassette with a 14-bp integration bar code (‘‘intBC’’) and three CRISPR/Cas9 cut sites on the 30 UTR of an mCherry reporter gene.

(B) Enrichment of mESC population with high lineage-tracer expression based on high mCherry expression (a reporter indicating lineage-tracer expression).

These cells are then single-cell cloned before generating chimeric KP-Tracer mice.

(C) Representative images of specific mCherry positive mESC clones that express the lineage-tracing vectors.

(D) Copy number of lineage-tracing vectors across 5 mouse embryonic stem cell (mESC) clones used in this study measured by genomic qPCR are shown.

(E and F) Detection of unique lineage-tracing target site intBCs for a representativemESC clone (1D5) using (E) DNA sequencing and (F) scRNA-seq. A consensus

set of target sites intBCs for each mESC clone was determined by selecting intBCs detected in at least 40% of all tumors derived from that mESC clone.

(G) The consensus intBC pivot table across all five mESC clones used in this study to generate KP-Tracer mice. Each row is a single cell and is annotated with

which mESC clone it came from. Each column is a unique intBC. Colors in the heatmap indicate whether or not an intBC was detected in a given cell.

(H) Quality-control filtering of tumor phylogenies for subclonal expansion analyses. Quality of lineage-tracing data was assessed with two metrics: first, the

percentage of cells that contained a unique set of mutations (‘‘% unique indel state’’; STAR Methods) and second, the percentage of target sites that had to be

filtered because of low diversity (‘‘target site saturation’’; STAR Methods). Tumors with less than 5% overall unique indel state, greater than 80% target site

saturation, or fewer than 100 cells were filtered out.
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Figure S2. Characterization of tumor subclonal expansions, related to Figure 2

(A–D) phylogenetic features of tumor lineages and their predictiveness (as measured with R2) on the expansion proportion of a tumor. Features evaluated were

(A) age, (B) median tree depth, (C) size measured in the number of cells, and (D) proportion of unique cells.

(E) Expansion proportion of tumorsmeasured from Neighbor-Joining trees versus Cassiopeia trees. The percentage of cells in expansions were highly consistent

between these two tree reconstruction strategies (Pearson’s correlation = 0.87).

(F) Comparison of cell-cycle scores inferred from transcriptomic profiles in expanding versus nonexpanding tumor subclones, identified from Neighbor-Joining

trees (** p < 0.01).

(G and H) Representative example of comparison between hierarchical clustering of CNVs and Cassiopeia-reconstructed phylogeny.

(G) The inferred CNVs are shown for the representative tumor, with the largest two clusters, identified via hierarchical clustering, indicated by the color bar.

(legend continued on next page)
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(H) These two clusters are also indicated with unique colors on the Cassiopeia-reconstructed tumor phylogeny. The good correlation between CNV status and

tumor phylogeny indicates the accuracy of tree reconstruction.

(I) Heatmap displaying the probabilities that a cell and its nearest neighbor on the Cassiopeia-reconstructed phylogeny are in the same CNV cluster (size of

circles). These probabilities were calculated for each tumor at various depths of the CNV hierarchical clustering dendrogram. The depth that yielded the most

coarse-grained clusters was set to have a cutoff height of 1, with higher cutoff heights indicating finer clusters. The majority of Cassiopeia-reconstructed

phylogenies were significantly consistent with CNV clusters (color of circles; permutation test) at all clustering resolutions.

(J) A comparison of CNV counts in expanding versus nonexpanding portions of tumors (* p < 0.05, ** p < 0.01, *** p < 0.001).

(K) An example of distinct CNV regions of cells from a single tumor. This tumor underwent two independent clonal expansions (red branches; left), each of which

exhibited distinct CNV patterns (red bars; right).

(L) An aggregated view of the CNV ‘‘hotspots’’ across subclonal expansions from all tumors. Each horizontal bar represents a chromosome, and the intensity of

color indicates the number of subclonal expansions exhibiting a CNV in a region (STAR Methods). Regions that more often exhibited copy number gains are

indicated in red (left); genomic regions that more often exhibited copy number losses are indicated in blue (right).
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(legend on next page)
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Figure S3. Characterization of transcriptomic fitness landscape, related to Figure 3
(A) Genemarkers for each Leiden cluster identified in the processed scRNA-seq latent space. Dot size indicates the percent of cells expressing themarker. Color

indicates mean expression level.

(B) Integration of normal lung epithelial cells with KP-Tracer dataset. Normal lung epithelial cells were isolated from an independent dataset and integrated with

KP-Tracer tumors using scVI (STAR Methods). Leiden cluster annotations from analysis of KP-Tracer tumors are shown (top), and normal cells are highlighted

against tumor cells (bottom).

(C) Gene set comparison between the FitnessSignature described in this study and KP tumor progression-associated genes described in (Chuang et al., 2017).

Overlap significance assessed with a hypergeometric test (*** = p < 1e–5).

(D) Average transcriptional FitnessSignature score in KP tumors harvested at 12-week, 20-week, and 30-week time points from (Marjanovic et al., 2020).

(E) Representative examples of tumors occupying distinct regions of the transcriptional space. Cells from the tumor of interest are shown in red, and all other cells

are shown in gray.

(F) Hotspot autocorrelation heatmap and clustering of genes that appear in the FitnessSignature and are positively associated with fitness. Gene modules are

identified by distinct color strips on the left. Values in the heatmap are Z-normalized pairwise autocorrelation scores between genes. The dendrogram linking

genes is shown for the columns.

(G) Z-normalized mean fitness gene module signature scores of each Leiden cluster.

(H) Kaplan-Meier plots for TCGA human lung adenocarcinoma patients with respect to genes in each fitness module. Curves are shown comparing overall

survival of patient groups whose tumors have high (red) versus low (blue) expression of individual fitness gene modules, as determined by the median fitness

module score. p values from a log-rank test are indicated.

(I) Fitness module enrichment personality plots. Each corner of the triangle represents the fold enrichment of an expansion’s fitness module expression over

expectation (nonexpanding background). Independent expansions in each tumor are shown in unique colors (blue or orange).

(J) Venn diagram illustrating the classification of expansions to genemodules based on a p value threshold of 0.05 using a permutation test against nonexpanding

background.
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Figure S4. Validation of EffectivePlasticity score and comparison to FitnessSignature, related to Figure 4

(A) Leiden cluster proportions for each KP-Tracer tumor. The fraction of cells in each Leiden cluster is shown for each tumor in a stacked bar plot, where each

Leiden cluster is indicated by the unique color introduced in Figure 3A. Tumors are ordered by mean FitnessSignature score.

(B) Shannon’s Entropy statistic for each tumor, computed with the Leiden cluster proportions; tumors are ordered by mean FitnessSignature score.

(C) Allelic EffectivePlasticity score overlaid onto two-dimensional gene expression UMAP is shown. Allelic EffectivePlasticity is an alternative way to quantify

EffectivePlasticity by comparing transcriptional states between cells with similar lineage-tracing indel states without using lineage trees.

(D) Comparison of Allelic EffectivePlasticity to scEffectivePlasticity (Pearson’s correlation = 0.73). Each point represents a single cell.

(E) Comparison of mean tumor Allelic EffectivePlasticity to tumor EffectivePlasticity (Pearson’s correlation = 0.96). Each point represents a tumor.

(F) L2 EffectivePlasticity score overlaid onto two-dimensional gene expression UMAP is shown. L2 EffectivePlasticity is another alternative way to quantify

EffectivePlasticity by computing dissimilarity in gene expression profiles between nearest neighbors on the phylogeny.

(G) Comparison of single-cell L2 EffectivePlasticity to scEffectivePlasticity (Pearson’s correlation = 0.69). Each point represents a single cell.

(H) Comparison of mean tumor L2 EffectivePlasticity with mean tumor EffectivePlasticity (Pearson’s correlation = 0.95). Each point represents a tumor.

(legend continued on next page)
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(I) Comparison of scEffectivePlasticity to single-cell FitnessSignature scores. Each point represents a single cell.

(J) Weighted mean EffectivePlasticity vs mean FitnessSignature for each transcriptional state (Leiden cluster). The weighted mean EffectivePlasticity for each

Leiden cluster was determined by first computing the mean scEffectivePlasticity for each Leiden cluster in a tumor, and then averaging these values together.

Each point represents a tumor.
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Figure S5. Validation of Evolutionary Coupling and Fate clustering, related to Figure 5

(A–D) Two alternative statistics measuring couplings between states from lineage-tracing data are used to corroborate the Evolutionary Coupling results for the

representative tumors 3435_NT_T1 and 3513_NT_T3 shown in Figures 5A–5D. The comparisons between Allelic Coupling and Evolutionary Coupling for (A)

(legend continued on next page)

ll
OPEN ACCESS Article



3435_NT_T1 and (B) 3513_NT_T3 are consistent (Pearson’s correlation = 0.94 and 0.99, respectively). The comparisons between KNNCoupling and Evolutionary

Coupling for (C) 3435_NT_T1 and (D) 3513_NT_T3 are consistent (Pearson’s correlation = 0.97 and 0.86, respectively). Red line indicates the symmetrical y=x

relationship.

(E) Cumulative density function for Pearson’s correlation of Allelic Coupling and KNN Coupling statistics with Evolutionary Couplings for all KP-Tracer tumors.

Median correlations are indicated with vertical bars and annotated with the median correlation value.

(F) Clustering of tumors based on Evolutionary Coupling and Leiden cluster proportion statistics reveals features that distinguish different Fate Clusters. Three

clusters are identified by unbiased clustering, corresponding to Fate Clusters 1, 2, and 3. Fate Cluster is annotated on top of each unique color in the first row of

the heatmap. Values/colors in the heatmap are normalized across tumors, and each row corresponds to a feature (either an Evolutionary Coupling or Leiden

cluster proportion). Evolutionary couplings are indicated by a tuple of the form (x, y), and Leiden cluster proportions are indicated by a single number of the form x.

We focus on showing features that distinguish different clusters, and uninformative features, identified as nonsignificant by a Mann-Whitney U test (p > 0.1), are

not shown.

(G) Heatmap of state proportions for each Fate Cluster across Leiden clusters. The value of the ith row and jth column indicate the fraction of cells found in the jth

Leiden cluster across all tumors in the ith Fate Cluster.

(H) Principal component analysis (PCA) of tumor Evolutionary Coupling and Leiden cluster proportion vectors. Each dot is a tumor. Tumors are colored by their

Fate Cluster, as identified with the hierarchical clustering shown in Figure S5E. The percent of variance explained is indicated on each axis.

(I) Biplot of PCA of Evolutionary Coupling and Leiden cluster composition vectors, where each arrow indicates the loading of the feature with respect to the first

two principal components. The top 10 features for the first two principal components are shown; arrows are annotated with the feature label. The percent of

variance explained is indicated on each axis. Features of the form (x, y) represent Evolutionary Couplings between state x and state y; features of the form x

represent the proportion of cells found in Leiden cluster x.

(J and K) Comparison of Phylotime statistics computed usingweighted and binary tree branch lengths for (J) Fate Cluster 1 and (K) Fate Cluster 2 (STARMethods).

Correlations are strong for both Fate Clusters (Pearson’s correlation = 0.94 and correlation = 0.98, respectively).

(L) Selected Evolutionary Couplings of individual tumors displayed on gene expression UMAP illustrating connections between transcriptional states (Leiden

clusters) of interest. From left: the first plot shows the Evolutionary Couplings within a representative tumor in Fate Cluster 1. The second plot shows the

Evolutionary Couplings within a representative tumor in Fate Cluster 2. The third plot shows couplings between Fate Cluster 1 (Leiden clusters 3 and 5) and Late-

stage transcriptome states (Leiden cluster 9). The fourth plot shows couplings between Fate Cluster 1 (Leiden clusters 3 and 5) and high-fitness transcriptome

states (Leiden clusters 7 and 9). The last plot shows couplings between Fate Cluster 1 (Leiden clusters 3, 5, and 14) and high-fitness transcriptome states (Leiden

cluster 9 and 13). These results offer evidence of potential transition from early, low fitness to late, high-fitness transcriptome states during tumor evolution.
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(legend on next page)
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Figure S6. Genetic perturbations shift the transcriptional fitness and plasticity landscape of tumors, related to Figure 6

(A and B) Subclonal expansion dynamics of (A) KPL and (B) KPA tumors. Independent expansions are colored with black, orange, or blue and measured with the

percentage of cells in the expanding subclone.

(C) Overlap of genes associated with high and low fitness for KP, KPL, and KPA tumors.

(D) Gene markers for newly identified Leiden clusters in the KP, KPL, and KPA integrated analysis. Dots are sized by the fraction of cells expressing a marker and

colored by the mean expression of the gene marker in a Leiden cluster.

(E) Leiden cluster proportions for each KPL (left) and KPA (right) tumor.

(F) Distribution of themean EffectivePlasticity for each Leiden cluster, averaged within each tumor, compared across genotypes. Leiden clusters 6, 11, 17, and 18

are not shown because they lacked enough tumors across genotypes to make comparisons.

(G) Evolutionary Couplings of different transcriptional states in three representative tumors reveals evolutionary paths in KPL and KPA tumors. Transcriptional

states that are represented by at least 2.5% of cells in each tumor are used. 3515_Lkb1_T1 is a representative KPL tumor. The left plot shows the lineage

relationship of transcriptional states in this KPL tumor and the right plot summarizes Evolutionary Couplings on the gene expression UMAP illustrating con-

nections between Leiden clusters 4, 0 and 9. 3777_Apc_T1 is a representative KPA tumor. The left plot shows the lineage relationship of transcriptional states in

this KPL tumor, and the right plot summarizes Evolutionary Couplings on the gene expression UMAP illustrating connections between Leiden clusters 4 and 16.

3765_Apc_T1 is another representative KPA tumor. The left plot shows the lineage relationship of transcriptional states in this KPL tumor, and the right plot

summarizes Evolutionary Couplings on the gene expression UMAP illustrating connections between Leiden clusters 4, 16, 13, 7, and 1.
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Figure S7. Lineage tracing illuminates the metastatic routes and origins, related to Figure 7

(A) Lineage indel heatmap of the 3724_NT_T1 tumor-metastasis family, summarizing the allelic information (indels) from the target sites confirming the separate

origin of the soft tissue and liver metastatic tumors. In the lineage indel heatmap, each row represents a single cell, and each column represents a cut site of the

lineage tracer. Unique indels are shown in unique colors, uncut target sites are indicated in gray, and missing data are indicated in white. The reconstructed

lineage based on the accumulated indel patterns using Cassiopeia are shown on the left. The corresponding sample ID for each cell is labeled on the right.

(B and C) Subclonal origin and the metastatic routes for 3515_Lkb1_T1 tumor-metastasis family.

(B) Lineage indel heatmap of 3515_Lkb1_T1 tumor-metastasis family, indicating indel alleles supporting the subclonal origins, the relative order, and the routes of

metastases, and (C) a model summarizing these metastatic behaviors.

(D) More supporting examples of expanding subclones giving rise to metastases across genotypes for 3513_NT_T1 (left), 3508_Apc_T2 (center), and

3519_Lkb1_T1 (right).

(E) Comparison of transcriptional distance between metastatic tumors and cells in nonexpanding and expanding regions of the primary tumor phylogeny for

3513_NT_T1, 3508_Apc_T2, 3519_Lkb1_T1, 3457_Apc_T1, and 3515_Lkb1_T1 metastasis families. All significances are indicated from a one-sided Mann-

Whitney U test: *** indicates p < 0.001, ** indicates p < 0.01, and * indicates p < 0.05.
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