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Baoming Qin,5 Pengcheng Guo,5 Guangyao Lai,5 Pura Muñoz-Cánoves,11,12 Patrick H. Maxwell,13 Jean Paul Thiery,14

Qing-Feng Wu,15 Fuxiang Zhao,1 Bichao Chen,1 Mei Li,1 Xi Dai,1,3 Shuai Wang,1,3 Haoyan Kuang,1 Junhou Hui,1

Liqun Wang,16 Ji-Feng Fei,16 Ou Wang,1 Xiaofeng Wei,17 Haorong Lu,17 Bo Wang,17 Shiping Liu,1,4 Ying Gu,1,18 Ming Ni,8

Wenwei Zhang,1,19 Feng Mu,8 Ye Yin,1,20 Huanming Yang,1,21 Michael Lisby,2 Richard J. Cornall,22 Jan Mulder,23,24

Mathias Uhlén,23,24 Miguel A. Esteban,1,5,25,* Yuxiang Li,1,* Longqi Liu,1,9,10,* Xun Xu,1,18,27,* and Jian Wang1,21,*
1BGI-Shenzhen, Shenzhen 518103, China
2Department of Biology, University of Copenhagen, Copenhagen 2200, Denmark
3College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
4Shenzhen Key Laboratory of Single-Cell Omics, BGI-Shenzhen, Shenzhen 518120, China
5Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
6Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
7Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
8MGI, BGI-Shenzhen, Shenzhen 518083, China
9BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450000, China
10Shenzhen Bay Laboratory, Shenzhen 518000, China
11Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), ICREA and CIBERNED, Barcelona 08003, Spain
12Spanish National Center on Cardiovascular Research (CNIC), Madrid 28029, Spain
13Cambridge Institute for Medical Research, Department of Medicine, University of Cambridge, Cambridge CB2 0XY, UK
14Guangzhou Laboratory, Guangzhou 510320, China
15State Key Laboratory of Molecular Development Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences,
Beijing 100101, China
16Department of Pathology, Guangdong Provincial People’s Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, China
17China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
18Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen 518120, China
19Shenzhen Key Laboratory of Neurogenomics, BGI-Shenzhen, Shenzhen 518103, China
20BGI Genomics, BGI-Shenzhen, Shenzhen 518083, China
21James D. Watson Institute of Genome Sciences, Hangzhou 310058, China
22Medical Research Council Human Immunology Unit, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7BN, UK
23Department of Protein Science, Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm 17121, Sweden
24Department of Neuroscience, Karolinska Institute, Stockholm 17177, Sweden
25Institute of Stem Cells and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
26These authors contributed equally
27Lead contact

*Correspondence: miguelesteban@genomics.cn (M.A.E.), liyuxiang@genomics.cn (Y.L.), liulongqi@genomics.cn (L.L.), xuxun@genomics.cn
(X.X.), wangjian@genomics.cn (J.W.)

https://doi.org/10.1016/j.cell.2022.04.003
SUMMARY
Spatially resolved transcriptomic technologiesarepromising tools tostudycomplexbiologicalprocessessuch
asmammalian embryogenesis. However, the imbalance between resolution, gene capture, and field of view of
currentmethodologiesprecludes their systematic application to analyze relatively largeand three-dimensional
mid- and late-gestation embryos. Here, we combined DNA nanoball (DNB)-patterned arrays and in situ RNA
capture to create spatial enhanced resolution omics-sequencing (Stereo-seq). We applied Stereo-seq to
generate the mouse organogenesis spatiotemporal transcriptomic atlas (MOSTA), which maps with single-
cell resolution and high sensitivity the kinetics and directionality of transcriptional variation during mouse
organogenesis. We used this information to gain insight into the molecular basis of spatial cell heterogeneity
and cell fate specification in developing tissues such as the dorsal midbrain. Our panoramic atlas will facilitate
in-depth investigation of longstanding questions concerning normal and abnormal mammalian development.
Cell 185, 1777–1792, May 12, 2022 ª 2022 The Author(s). Published by Elsevier Inc. 1777
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INTRODUCTION

Since the time of Aristotle, understanding how a single totipotent

cell, the zygote, develops into a complex organism such as a

mammal in a precisely controlled manner, over time and space,

is one of the most fascinating scientific challenges. The labora-

tory mouse is an excellent model animal to study development

and establish parallels with larger mammalian species. Recent

cell atlases using high-throughput single-cell RNA-sequencing

(scRNA-seq) and single-cell assay for transposase accessible

chromatin sequencing (scATAC-seq) technologies have pro-

vided an increasingly detailed view of mouse developmental

gene expression and gene regulatory dynamics (Cao et al.,

2019; He et al., 2020; Pijuan-Sala et al., 2020). However, the

lack of topographical information greatly complicates the inter-

pretations of the hierarchical mechanisms underlying the emer-

gence of cell positioning and identities. High-throughput

spatially resolved analysis of gene expression will be a critical

enabler for further dissecting the intricacies of mammalian

development.

Several remarkable methodologies have been developed

recently that allow systematic spatially resolved transcriptomic

profiling of tissue sections (Rao et al., 2021). These techniques

all have specific advantages and disadvantages in resolution

and applicability but share a major caveat in the limited field of

view. Early mouse embryos (Lohoff et al., 2022; Peng et al.,

2019), specific late-stage-embryonic tissues such as the cere-

bral cortex (Di Bella et al., 2021; Stickels et al., 2021), and whole

midgestation embryos (Liu et al., 2020; Srivatsan et al., 2021;

Yao et al., 2020) have been analyzed using these approaches.

However, no available technology can profile whole mouse em-

bryos in mid- or late-stage gestation in an unbiased manner and

with high definition (single-cell resolution and high sensitivity).

This poses a tremendous challenge for studying the differentia-

tion continuum across separate areas of the same tissue and

for comparing different tissues simultaneously. Here, we report

the development of a DNB-based genome-wide technology,

Stereo-seq, that combines single-cell resolution, high sensitivity,

and a large field of view, and report its use to generate a spatially

resolved transcriptomic atlas of mouse organogenesis.

RESULTS

DNB-patterned arrays enable large field-of-view
spatially resolved transcriptomics with high definition
DNB sequencing is based on lithographically etched chips

(patterned arrays) for in situ sequencing (Drmanac et al., 2010).

We used these features as the foundation for a spatially resolved

transcriptomic technology with high resolution and large field of

view as follows. Standard DNB chips have spots with approxi-

mately 220 nm diameter and a center-to-center distance of

500 or 715 nm (Figure 1A, step 1), providing up to 400 spots

for tissue RNA capture per 100 mm2. DNB templates containing

random barcodes are deposited on the patterned array, incu-

bated with primers, and sequenced to obtain the data matrix

containing the coordinate identity (CID) of every DNB (Figure 1A,

step 2). The use of random barcode-labeled DNB achieves a

large spatial barcode pool size (425 distinct spots). Next, unique
1778 Cell 185, 1777–1792, May 12, 2022
molecular identifiers (UMI) and polyT sequence-containing oli-

gonucleotides are ligated onto each spot through hybridization

with an oligonucleotide sequence containing the CID (Figure 1A,

step 3). Frozen tissue sections (10 mm thickness) are loaded onto

the chip surface, followed by fixation, permeabilization to cap-

ture the tissue polyA-tailed RNA, and finally reverse transcription

plus amplification (Figure 1A, step 4). Amplified-barcoded cDNA

is collected, used as template for library preparation, and

sequenced together with the CID (Figure 1A, step 5). Computa-

tional analysis of the sequencing data allows high-resolution

spatially resolved transcriptomics (Figure 1A, step 6). We named

this approach spatial enhanced resolution omics-sequencing

(Stereo-seq). Importantly, Stereo-seq has a larger number of

spots per 100 mm2, with smaller spot size and center-to-center

distance, than any other published method (Figure 1B). So far,

we have used Stereo-seq chips of up to an effective area of

13.2 cm 3 13.2 cm for different tissue sizes, subdivided into

50, 100, and 200mm2 chips for profiling sections from themouse

olfactory bulb (�10.5mm2), a mouse hemibrain (�24.2mm2) and

whole mouse embryos (�7.1 to �76.1 mm2), respectively (Fig-

ure S1A). These capture areas are substantially larger than those

achieved by other reported technologies (Figure 1B), and we

anticipate the application of unsliced chips to much larger tis-

sues (Figure S1A).

To benchmark our technology, we profiled the mouse olfac-

tory bulb (Lebrigand et al., 2020; Ståhl et al., 2016; Stickels

et al., 2021; Vickovic et al., 2019). Stereo-seq captured UMI

counts ranging on average from 69 per 2 mm (diameter) bin (bin

3, 3 3 3 DNB), 1,450 per 10 mm (diameter) bin (bin 14, 14 3 14

DNB, equivalent to �1 medium size cell), and 133,776 per

100 mm (diameter) bin (bin 140, 140 3 140 DNB) (Figure 1C).

This is superior to other reported technologies including Seq-

Scope (848 UMI on average per 10 mm diameter bin) when

compared at the same resolution. The distribution of genes

and UMI per bin was highly consistent between adjacent sec-

tions (R2 = 0.963) (Figures S1B and S1C). Of note, conventional

cell taxonomy analysis based on scRNA-seq uses algorithms

such as Leiden clustering to group cells based on transcriptome

similarity (Traag et al., 2019). However, applied to spatially

resolved data, this is problematic due to the lack of consideration

of spatial coordinates. To fully utilize spatially resolved transcrip-

tomic information, several algorithms have been applied to the

analysis of datasets derived from technologies such as Visium

and Slide-seqV2 (Dries et al., 2021; Hu et al., 2021; Zhao et al.,

2021). Considering the specific Stereo-seq features, we devel-

oped a spatially constrained-clustering (SCC) algorithm opti-

mized for analysis of larger, more complex tissues (see STAR

Methods). This approach clustered bins over a continuous area

from which tissue domains are annotated (Figure S1D). The dis-

tribution of specific markers (Pcp4 and Slc17a7) captured by

Stereo-seq exhibited the expected similarity to in situ hybridiza-

tion (ISH) data taken from Allen Brain Atlas (ABA) (Lein et al.,

2007) and clearer patterns than HDST (Vickovic et al., 2019) or

Slide-seqV2-resolved (Stickels et al., 2021) expression data

(Figure S1E).

To further demonstrate the robustness of Stereo-seq and

prove its ability to dissect tissues with cellular resolution, we pro-

filed an adult mouse coronal hemibrain section. We applied a



Figure 1. Stereo-seq enables high-definition spatially resolved transcriptomics with large field of view

(A) Stereo-seq pipeline. Step 1, design of the DNB patterned array chip. Step 2, in situ sequencing to determine the spatial coordinates of uniquely barcoded

oligonucleotides. Step 3, preparation of capture probes by ligating the UMI-polyT containing oligonucleotides to each spot. Step 4, in situ RNA capture from

tissue. Step 5, cDNA amplification, library construction, and sequencing. Step 6, data analysis.

(B) Stereo-seq achieves a smaller spot size (upper left), higher resolution (upper right), higher number of spots per 100 mm2 (bottom left), and larger capture area

(bottom right) than other reported methods. Samples used for the comparison included mouse olfactory bulb (Stereo-seq, Visium [Lebrigand et al., 2020], Slide-

seqV2 [Stickels et al., 2021], and HDST [Vickovic et al., 2019]), E10 mouse embryo (DBiT-seq) (Liu et al., 2020), and mouse liver (Seq-Scope) (Cho et al., 2021).

Note that since Seq-Scope uses a random array, the size of each pixel was estimated according to the published dataset.

(C) Box plots showing the number of transcripts captured by Stereo-seq at the indicated resolution in comparison with reported HDST, Slide-seqV2, Visium,

DBiT-seq, and Seq-Scope datasets. Samples in those datasets used for comparison are as in (B).

See also Figure S1.
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nucleic acid dye before in situ permeabilization to assess the cor-

relationbetween theobtainedsignals and theStereo-seqdata af-

ter sequencing. There was substantial colocalization of the dye

and the aggregated transcripts detected by Stereo-seq

(Figures 2A and 2B), illustrating that cells can be segmented in

an image-dependent manner. To analyze the brain data, we per-

formed unsupervised SCC of binned (bin 50, 50 3 50 DNB bins,

25 mm diameter) Stereo-seq data to identify the different

anatomic regions. These included the cortex and subcortical re-

gions such as hippocampus, thalamus, and striatum, among

others (Figure 2C). Then, we applied an image-based cell seg-
mentation (see STARMethods) that enables accurate integration

of nucleic acid and transcript images into an image-guided gene-

by-cell matrix. After filtering out the low-capture cells, we ob-

tained 50,140 segmented cells with an average of 1,910 UMI

and 792 genes per cell (Figure S1F). The segmented cells dis-

played differential spatial distribution between nucleus-localized

transcripts (Malat1 and Neat1) and cytoplasmic-enriched mito-

chondrial transcripts within each cell, consistent with the subcel-

lular resolution of Stereo-seq (Figure S1G).We also examined the

lateral RNA diffusion by measuring the spatial distribution of

the neuropeptide Vip in Vip+ interneurons, observing that the
Cell 185, 1777–1792, May 12, 2022 1779



Figure 2. Stereo-seq dissects the adult mouse brain with cellular resolution

(A) Left: nucleic acid staining image of an adult coronal mouse hemibrain section. Right: spatial visualization of the detected DNB signals in the same section.

Scale bars, 500 mm.

(B) Left: magnification showing the detected DNB signals from the region squared in (A). Right: superimposed nucleic acid staining and captured DNB signals

from the region squared in the left. Scale bars, 100 mm (left) and 20 mm (right). Outlines are segmented cell boundaries.

(C) Left: unsupervised SCC of the same mouse hemibrain section analyzed by Stereo-seq at bin 50 resolution. Right: spatial visualization of segmented cell

clusters by unsupervised clustering. Bins and cells are colored by their annotation. Lat-ven, lateral-ventral cortex; CAA, cortical amygdalar area; PAN, posterior

amygdalar nucleus; FT, fiber tract; SO CA1, stratum oriens area 1; CA1, cornu ammonis area 1; SL/R CA1, stratum lacunosum/raditum cornu ammonis area 1;

MLDG, molecular layer of dentate gyrus; DG, dentate gyrus; CA3, cornu ammonis area 3; Mb, midbrain; SN/VTA, substantia nigra/ventral tegmental area. EX,

excitatory glutamatergic neuron; IN, GABAergic interneuron; DA, dopaminergic neuron; GN DG, granule cell of dentate gyrus; Astr, astrocyte; Micro, microglia;

OPC, oligodendrocyte precursor cell; Oligo, oligodendrocyte; SMC, smooth muscle cell; Ery, erythrocyte; and Endo, endothelial cell. Scale bars, 500 mm.

(D) Magnification images showing cell-type localization in the regions squared in (C). Scale bars, 100 mm.

See also Figure S1.
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diffusion distance is moderately greater with Stereo-seq (on

average, 6.84 mm) than smFISH (on average, 5.32 mm) (Codeluppi

et al., 2018) (Figure S1H). Unsupervised clustering of the gene-

by-cell matrix and subsequent detailed annotation based on

the expression of marker genes identified different types and

subtypes of cells. These included neurons (i.e., eight types of

excitatory glutamatergic neurons from different layers of cortex

or regions and four types of GABAergic interneurons expressing

diverse neurochemical markers including Sst, Pvalb, Vip, and

Reln) as well as non-neuronal cells (i.e., five types of astrocytes,

oligodendrocytes, oligodendrocytic precursors, microglia, and

vascular cells) (Figures 2C, 2D, S1I, andS1J). The validity of these

annotations was confirmed by comparison with a reported

scRNA-seq dataset for the concordant spatial domains (Zeisel

et al., 2018) (Figures S1K and S1L). Moreover, the location of
1780 Cell 185, 1777–1792, May 12, 2022
the different cell types was consistent with existing knowledge

of the corresponding anatomic regions annotated using bins.

Therefore, Stereo-seq data can be used to both identify func-

tional anatomic regions in large tissues through bin-based clus-

tering, and cell types based on image-guided cell segmentation.

Hence, Stereo-seq spatially characterizes the transcriptomic

organization and individual cell-type composition of complex tis-

sues in an unbiased manner with high sensitivity and large field

of view.

Spatially resolved transcriptomic atlas of mouse
organogenesis
As proof of principle of the technological strength of Stereo-seq,

we initiated the mouse organogenesis spatiotemporal transcrip-

tomic atlas (MOSTA) to map the spatiotemporal transcriptomic



(legend on next page)
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dynamics of the developing mouse embryo at full scale. We pro-

filed 53 sagittal sections from C57BL/6 mouse embryos span-

ning E9.5–E16.5 with one-day intervals. For E9.5–E15.5 stages,

four to six sections were included from different embryos. For

E16.5, 18 sections were profiled, with a series of 13 sections

from one single embryo and five from another to assess repro-

ducibility, allowing coverage of all major tissues and organs

(Table S1). These stages includemost of the key events inmouse

organogenesis (Cao et al., 2019).

To gain an unbiassed global view of the spatial transcriptomic

patterns, we aggregated our embryo datasets for individual sec-

tions into bins (bin 50). In total, we retrieved transcriptomic infor-

mation for 3,511,403bins. Theaveragenumberof capturedgenes

per bin ranged from 1,770 at E15.5 to 3,900 at E10.5 and of UMI

from 4,357 at E15.5 to 13,789 at E9.5 (Figure S2A; Table S1).

Thedistributionof genesandUMIperbin variedbetweensections

from different time points (Figure S2B). Unsupervised SCC of

these bins showed transcriptomic configurations matching the

localization of major tissues and organs (e.g., skin, bone, muscle

nervous system, thymus, heart, lung, liver, pancreas, kidney, ad-

renal gland, gastrointestinal tract, genitourinary tract, and ovary)

at each time point. Remarkably, the external boundaries of these

clusters closely resembled the anatomic regions (Figures 3A and

S2C and MOSTA website). We also reconstructed the develop-

mental trajectories for the annotated regions in whole embryos

using TOME (Qiu et al., 2022a). This showed spatiotemporal con-

nections largely consistent with our contemporary understanding

of mouse development (Figure S2D). Tissue-specific identities

were confirmed by visualizing specific marker genes (e.g., Acta2

in the smooth muscle, Myog in the skeletal muscle, Krt5 in the

epidermis,Sftpc in the lung,Afp in the liver, andCol2a1 in thecarti-

lage primordium) on the spatial maps across all embryonic time

points (Figure S3A). Notably, the extended coverage of the

E16.5 embryo allowed us to obtain serial images in developing tis-

sues and organs, such as themeninges (Atp1a2+), the spinal cord

(Hoxb8+), and the lung (Sftpc+) (FigureS3B). In addition, sinceSte-

reo-seq captures high density of signals, we performed spatial re-

clustering of bins from areas corresponding to selected tissues,

which revealed detailed subregions. For example, in the E13.5

spinal cord, we identified the ventricular zone (Hopx+), marginal
Figure 3. Spatiotemporal transcriptomic atlas of mouse organogenesi

(A) Top: unsupervised SCC of mouse embryo sections across E9.5–E16.5. Embr

E1S1, E14.5 E1S1, E15.1 E1S1, and E16.5 E1S1 are shown. Bins are colored by th

overview of the sampled embryonic time points and sections shown in (A) and Figu

The distance of each section from the midline is indicated. Scale bars, 1 mm.

(B) Reclustering of the squared areas in (A) identified detailed anatomic regions fo

selected anatomic regions is shown on the right side of each panel. MZ, marginal

spinal alar plate; SpB, spinal cord basal plate; SpBs, superficial stratum of spina

250 mm (right).

(C) Unsupervised clustering of mouse embryonic brain from E9.5 and E12.5–E

retrieved from E9.5 E1S1, E12.5 E1S2, E13.5 E1S2, E14.5 E1S1, E15.5 E1S1,

subpallium; Die, diencephalon, OB, olfactory bulb; Hy, hypothalamus; Mb, dors

plexus; Noto, notochord; FMN, facial motor nucleus; and Mes, mesenchyme. Sc

(D) Heatmap showing the regulons with significant spatial autocorrelation group

embryo section (E1S1). Selected regulons and their corresponding GO terms rel

(E) Spatial visualization of representative regulons from the indicated modules in

(F) Spatial visualization of the regulons GATA4 (left) and TBX5 (right) from the

bars, 500 mm.

See also Figures S3 and S4.
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zone (Slc5a7+), basal plate (Vsnl1+), ventral (Fut9+) and lateral

parts of the spinal alar plate (Hoxb8+), and superficial stratum of

spinal basal plate (Pdyn+); in the E16.5 kidney, we localized artery

(Myl9+), cortex (Lhx1+), medulla (Nrxn3+), capsule (Robo2+), and

glomeruli (Poxdl+) (Figure 3B). We also reclustered the E9.5,

E12.5,E13.5,E14.5, E15.5, andE16.5brains (Figure3C). The sub-

sequent clustersmatchedwell with anatomically defined brain re-

gions including the ventricular and mantle zones of the pallium,

subpallium, midbrain, hindbrain, diencephalon, cerebellum, hy-

pothalamus, olfactory bulb, and choroid plexus. The expression

of many knownmarker genes in these brain clusters is consistent

with known cellular distributions across the corresponding

anatomic regions (Figures S3C and S3D). Projection of publicly

available scRNA-seq data (La Manno et al., 2021) of the devel-

oping brain onto the reclustered E9.5 brain using Tangram (Bian-

calani et al., 2021) identified the localization of progenitor cell

types including secondary organizers (e.g., midbrain basal plate,

midbrain floor plate, ventricle roof plate, and hindbrain floor plate)

(Figure S3E), which are specialized substructures responsible for

regional patterning.

Next, we studied functional enrichments within specific areas

contained in the individual tissue clusters generated with Ste-

reo-seq by applying Hotspot (DeTomaso and Yosef, 2021), an

algorithm that measures nonrandom variation to recognize infor-

mative gene programs. This is important because amalgamation

ofdifferent signals incomplex tissuescancomplicate the interpre-

tations. The resulting gene programs showedwell-defined spatial

patterns that, to a large extent, match anatomic regions and con-

tained sets of genes that could be validated by ISH (e.g., Kitl co-

localizing with Shh in the E9.5 notochord and Pantr1 with Sox2

in the E11.5 brain) (Figures S4A–S4E). Kitl is a pleiotropic factor

that acts in the ontogeny of different cell types (Broudy, 1997).

The colocalization of Pantr1 with Sox2 is consistent with the reg-

ulatory function of this long noncoding RNA in early neuronal dif-

ferentiation (Goff et al., 2015). Likewise, gene ontology (GO)

enrichment analysis demonstrated that most of these spatially

restrictedgeneprogramscorrespond to features related toorgan-

or region-specific biological processes (Figures S4A and S4B).

We also examined whether Stereo-seq can be used to dissect

the gene regulatory networks controlling cell identity and cell
s

yo sections including E9.5 E1S1, E10.5 E1S1, E11.5 E1S1, E12.5 E1S1, E13.5

eir annotation. The squares indicate the regions for analysis in (B). Bottom left:

re S2C. Bottom right: overview of the sampled sections at E16.5 (E2S1–E2S13).

r the spinal cord (E13.5) and kidney (E16.5). The expression of marker genes for

zone of spinal cord; SpAL, lateral part of spinal alar plate; SpAV, ventral part of

l basal plate; VZ, ventricular zone of spinal cord. Scale bars, 500 mm (left) and

16.5 identified anatomic regions of the developing brain. Brain regions were

and E16.5 E1S1. MZ, mantle zone; VZ, ventricular zone; Pall, pallium; SPall,

al midbrain; SpC, spinal cord; Hb, hindbrain; Cere, cerebellum; ChP, choroid

ale bars, 1 mm.

ed into different modules based on pairwise spatial correlations of an E16.5

ated to representative regulon modules are highlighted on the right side.

(D). Scale bars, 1 mm.

heart regions across sections from E16.5 shown in (A) (E2S3–E2S11). Scale



(legend on next page)
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state in the developing embryos. These networks are often stud-

ied in the form of modules of coexpressed genes that are core-

gulated by common sets of transcription factors or regulons.

These data can be extracted from scRNA-seq datasets using al-

gorithms such as single-cell regulatory network inference and

clustering (SCENIC) (Aibar et al., 2017), but the lack of spatial in-

formation is likely to confound important associations. We

applied SCENIC to the binned Stereo-seq maps of each of the

individual time points in MOSTA to identify coexpressed genes

and calculate the frequencies of predicted transcription factor-

binding events. Then, we used again Hotspot (DeTomaso and

Yosef, 2021) to find more precisely the spatial domains

controlled by these regulons and to define modules of intercon-

nected regulons. This identified multiple regulon modules asso-

ciated with regional specificity at each stage. For example, at

E9.5, we identified 31modules containing a total of 498 regulons,

and at E16.5, we identified 35 modules containing a total of 469

regulons that correspond to different tissues (Figures 3D, S4F,

and S4G). Among the E16.5 regulons, ARNT2 was enriched in

the brain, FOXC2 in the meninges, GATA4 in the heart, SOX9

in the bone, and MEF2C in the muscle (Figure 3E). Some regu-

lons such as GRHL2, which belongs to a family of master epithe-

lial transcription factors (Hinze et al., 2018), were highly enriched

in multiple regions including the hair follicle, aorta-gonad-meso-

nephros, submandibular gland, lung, primitive gut tube, kidney,

and skin. In the E16.5 embryo, we could define the localization

of regulons across serial sections of the same organ such as

GATA4 and TBX5 in the ventriculus and atrium of the developing

heart, respectively (Figure 3F).

MOSTA generated by Stereo-seq constitutes a vast and unbi-

ased topographic transcriptomic resource to investigate themo-

lecular basis of tissue patterning during mouse organogenesis

and can be searched using our interactive data portal at

https://db.cngb.org/stomics/mosta/.

Spatial heterogeneity of cell types in mouse embryonic
tissues
To understand the developmental dynamics of cell fate deci-

sions leading to tissue patterning, it is important to topographi-
Figure 4. Spatial diversification of cell types at whole embryo scale
(A) Left: UMAP of the segmented cells from an E16.5 section (E1S3). The UMAP vis

(bottom) are showed in the side panels. Right: spatial visualization of cell types sh

their annotation. Fb radial glia, forebrain radial glia cell; OEC, olfactory epithelial ce

neuron, diencephalon neuron; Mb/Hb/SpC neuron, mid-/hind-brain, and spinal

macrophage. Scale bars, 500 mm.

(B) Left: spatial visualization of different subtypes of the epithelial cell clusters sh

localization for the regions squared in the left. Scale bars, 100 mm.

(C) Left: spatial visualization of different cell states of chondrocytes shown in (A). S

the regions squared in the left. Scale bars, 100 mm.

(D) Left: spatial visualization of cell types in the E16.5 telencephalon. Cells are colo

GABAergic neuron clusters. The MGE region is indicated. Fb RGC, forebrain radia

neuroblast; Fb GABA NeuB, forebrain GABAergic neuroblast; Fb GABA Neu, f

glutamatergic neuroblast; Corti prog, cortical intermediate progenitor; Corti Glu

hypothalamus neuron; Die Glu Neu, diencephalon glutamatergic neuron; ChP, c

bars, 250 mm.

(E) RNA velocity streamline plot visualizes themigratory trajectory of the GABAerg

score and positioned in the same coordinates as in (D).

(F) Gene expression heatmap of all PCA genes in a pseudotemporal order of tan

See also Figures S5 and S6.
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cally dissect the embryo transcriptome at single-cell level. We

performed image-based cell segmentation for a section of the

E16.5 embryo to showcase the strength of Stereo-seq in pre-

senting whole embryo transcriptomic analysis at single-cell

resolution. We selected this time point because of the near com-

plete level of patterning in embryonic tissues at this stage. After

filtering out the low-capture cells, we obtained 281,377

segmented cells with an average of 1107 UMI and 529 genes

per cell (Figures 4A and S5A). Unsupervised clustering of the

gene-by-cell matrix and uniform manifold approximation and

projection (UMAP) visualization revealed 25 major cell types

based on knownmarkers (Figures 4A and S5B andMOSTAweb-

site). These cell typeswere either located in specific anatomic re-

gions (e.g., cardiomyocytes, hepatocytes, and different types of

neurons) or represented common cell types spread across mul-

tiple sites (e.g., chondrocytes, epithelial cells, myoblasts, and

endothelial cells). Reclustering of specific cell populations could

further identify cell subtypes or cell states. For example, the

epithelial cell cluster (Epcam+, Krt8+) could be grouped into

specialized epithelial cell subtypes including hair follicle cells

(Krt5+, Krt17+), alveolar type II cells (Foxp2+, Nkx2-1+), club cells

(Scgb3a2+, S100a6+), and ciliated cells (Dynlrb2+, Foxj1+) from

the lung, zona glomerulosa epithelial cells (Akr1b7+, Star+) from

the adrenal cortex, glandular epithelium (Gstm1+, Wfdc18+)

from the salivary gland, stratified squamous epithelium (Krt5+,

Krt15+) from the oral mucosa, renal tubular cells (Dach1+,

Calb1+), and thymic epithelial cells (Tcrg-C1+, Tbata+)

(Figures 4B, S5D, and S5E). Similarly, the developing bone

showed gradual appearance and maturation of chondrocytes

at different anatomic regions. Reclustering of the chondrocyte

population identified distinct cell states including round (Sox5+,

Sox9+), columnar (Sulf1+, Robo1+), prehypertrophic (Prrx1+,

Fbxl7+), early hypertrophic (Runx2+, Ibsp+), and late hypertrophic

(Spp1+, Mmp9+) chondrocytes, as well as the nucleus pulposus

cells (Pax1+, Fmod+) (Figures 4C, S5F, and S5G).

We then studied the cellular heterogeneity of the E16.5 brain.

The precise regulation of cell identity in the developing brain is

critical for the establishment of brain architecture but is yet

poorly understood. Clustering of the segmented cells in different
ualization of the reclustering results of epithelial cells (upper) and chondrocytes

own in the left panel for the whole E16.5 embryo section. Cells are colored by

ll; Fb neuron, forebrain neuron; Dorsal Mb neuron, dorsal midbrain neuron; Die

cord neuron; SMC, smooth muscle cell; Endo, endothelial cell; and Macro,

own in (A). Scale bars, 1 mm. Right: magnification images showing cell-type

cale bars, 1 mm. Right: magnification images showing cell-type localization for

red by the annotations. Right: spatial visualization of GABAergic neuroblast and

l glia cell; Fb NeuB, forebrain neuroblast; Fb Glu NeuB, forebrain glutamatergic

orebrain GABAergic neuron; CR, Cajal-Retzius cell; Corti Glu NeuB, cortical

Neu, cortical glutamatergic neuron; Olfa Neu, olfactory neuron; Hypo Neu,

horoid plexus; Endo, endothelial cell; Fibro, fibroblast; Ery, erythrocyte. Scale

ic neurons/neuroblasts. Cells are colored by the vector field-based pseudotime

gential migration. Example genes are labeled.

https://db.cngb.org/stereomics/mosta/
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anatomic regions identified different types of progenitor cells

(e.g., radial glia cells, neuroblasts, and glioblasts), neurons

(e.g., GABAergic interneurons, excitatory glutamatergic neu-

rons, and dopaminergic neurons), and non-neuronal cell types

(e.g., endothelial cells and fibroblasts) based on the expression

of marker genes (Figures S6A and MOSTA website). To validate

our results, we aligned with scRNA-seq data using Tangram

(Biancalani et al., 2021), which confirmed the reported probabi-

listic spatial profile for specific cell types such as choroid plexus,

hindbrain glioblasts, forebrain GABAergic neuroblasts, midbrain

glutamatergic neuroblasts, cortical and hippocampal glutama-

tergic neurons, and forebrain GABAergic neurons in the whole

brain (La Manno et al., 2021) (Figure S6B).

We zoomed into the telencephalon for more detailed analysis.

Dorsal cortical ventricular zones give rise to glutamatergic neu-

rons that populate the cerebral cortex and hippocampus. The

ventral ventricular zones of the lateral, medial, and caudal gangli-

onic eminence give rise to GABAergic interneurons that populate

the striatum and globus pallidus and migrate into the cerebral

cortex. We also aligned the Stereo-seq data with a scRNA-seq

study from the developingmouse cortex (Di Bella et al., 2021) us-

ing Tangram, confirming the reported spatial profiles of these cell

types (Figure S6C). Our E16.5 Stereo-seq map clearly identified

the expression of interneuron progenitor markers (Dlx1+, Dlx2+,

Lhx6+, Nkx2-1+) (Lim et al., 2018) within the medial ganglionic

eminence (MGE) and the migratory trajectory of interneurons

into the cerebral cortex (Figures 4D and S6D). To determine

the directionality of gene expression changes during interneuron

migration and maturation along the rostro-caudal cortical axis,

we studied spatial RNA velocity using dynamo (Qiu et al.,

2022b) (see STAR Methods), an analytical framework that mea-

sures transcriptional dynamics to predict the emergence of cell

fates by reconstructing a continuous vector field. In this regard,

over 10% of the Stereo-seq captured transcripts contained in-

tronic reads (Figure S6E), comparable with the proportion

captured by scRNA-seq (La Manno et al., 2018; Qiu et al.,

2022b). Spatial RNA velocity analysis revealed strong directional

flows consistent with the tangential migration of interneurons

from the MGE into the cerebral cortex (Figure 4E). To discern

the regulators guiding this process, we performed vector field-

based pseudotime analysis along the migration path (see

STAR Methods) (Figure 4F and MOSTA website). This showed

the trajectory toward mature interneurons as indicated by the

shift from the early progenitor markers Epha5, Tcf4, and Erbb4

to the latematurationmarkerGad2 (Lim et al., 2018). The expres-

sion patterns of Erbb4 and Gad2 are consistent with ISH images

taken from ABA (Lein et al., 2007) (Figure S6F). We also observed

unknown potential regulators (Ttc3 and Celf4) of interneuron

migration that could be interesting for further exploration (Fig-

ure 4F). In addition, we used SCENIC to analyze the distribution

of telencephalon regulons corresponding to the segmented cell

clusters (Figure S6G). This identified enrichment for transcription

factors with specific activities associated with the maturation of

projection neurons and interneurons (i.e., PAX6 in apical progen-

itors, MEF2C in cortical projection neurons, and DLX1 in the in-

terneurons) (Di Bella et al., 2021; Lim et al., 2018) (Figure S6H).

Reanalysis of a reported scATAC-seq dataset of the developing

cortex (Di Bella et al., 2021) showed consistency between the
top transcription factor hits identified with Stereo-seq and the

DNA-binding motif deviation score in the corresponding cell

types (Figure S6I).

MOSTA comprehensively characterizes cell-type and cell-

state heterogeneity at whole embryo level, which is relevant for

reconstructing cell differentiation processes involving regional

and subregional specificities.

Spatial heterogeneity of progenitor cells in the
developing dorsal midbrain
Despite its relatively small size, the midbrain (or mesencephalon)

is associated with essential functions including vision, hearing,

motor control, and temperature regulation. The dorsal midbrain

contains complexmultilayered structures like the cerebral cortex

that form the superior and inferior colliculi (Arimura et al., 2019).

However, its development has been less well characterized in

terms of cellular taxonomy andorganization comparedwith other

brain regions. We thus chose the dorsal midbrain to investigate

the dynamics of progenitor cell differentiation across multiple

embryonic time points. We collected image-based cell segmen-

tation of the developing dorsal midbrain regions at E12.5, E14.5,

andE16.5. Reclustering of the gene-by-cell expressionmatrix re-

vealed multiple cell types including terminally differentiated cells

(e.g., GABAergic neurons, glutamatergic neurons, microglia, fi-

broblasts, and endothelial cells) and progenitors (radial glia cells,

neuroblasts, and glioblasts) based on marker gene expression

(Figures 5A, S7A, and S7B). Interestingly, we noticed variations

in the pattern of progenitor cell appearance and maturation

across the different embryonic stages (Figures 5B, 5C, S7C,

and S7D). Radial glia cells (Mki67+, Dbx1+), which are the source

of both neuroblasts (Npas3+, Adgrb3+) and glioblasts (Aldh1l1+,

Efna5+), were themost abundant progenitors at E12.5, withwide-

spread distribution. At this stage, there was only occasional

appearance of sparsely distributed neuroblasts, whereas glio-

blasts localized mostly in the central and caudal parts. At

E14.5, the radial glia cells disappeared from the rostral part and

remained in the more caudal domains of the ventricular zone,

revealing the spatiotemporal development of this brain region.

Intriguingly, both neuroblasts and glioblasts were not evenly

distributed along the ventricular zone but organized in glioblast-

and neuroblast-rich patches. This indicates the programmed or-

ganization of units along the ventricular zone that give rise to

different cell types that populate the neuron-rich and glia-rich re-

gions of the superior colliculus. At E16.5, radial glia cells further

decreased and concentrated in the caudal part, with neuroblasts

showing a more restricted distribution and glioblasts expanding

in number in the original locations. These findings suggest an

asynchronous and spatially heterogeneousmodel of neurogene-

sis and gliogenesis, with glioblasts appearing early at specific

anatomic locations where they remain until later differentiation.

Spatial pseudotime analysis of progenitor cells in these three

stages usingmonocle 3 (Cao et al., 2019) confirmed these results

(Figures 5D–5F and S7E). Cell-cycle score analysis confirmed

that radial glia cells showhigher proliferation comparedwith neu-

roblasts and glioblasts.

To further probe potential molecular mechanisms underlying

neurogenesis and gliogenesis in the dorsal midbrain, we applied

monocle 3 to the global UMAP of E12.5, E14.5, and E16.5 cell
Cell 185, 1777–1792, May 12, 2022 1785
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populations. The resulting developmental trajectories revealed

two branches arising from radial glia cells, one to neuroblasts

and the other to glioblasts (Figure 5D).We examined the differen-

tially expressed genes (DEG) associated with the neuroblast and

glioblast lineage bifurcation (Figure 5G). In addition, we identified

highly specific expressions of extrinsic cues (ligands) in glio-

blasts (e.g., Rspo1/2/3, Wnt1, and Wnt9a) and neuroblasts

(Fgf15, Wnt7b, and Tnc) (Figures 5G–5I and MOSTA website),

providing potential mechanistic insight for the further specifica-

tion of these progenitors. These results are in line with ISH im-

ages of the Rspo1 and Fgf15 taken from ABA (Lein et al., 2007)

(Figure S7F). Likewise, regulon analysis of the E12.5–E16.5

developing dorsal midbrain identified putative transcription fac-

tors associated with neuroblast and glioblast lineage commit-

ment (Figures 5J and 5K). For example, HES1 was highly active

in glioblasts, and its target genes included known genes specific

to the glia lineage such as Aldh1l1 and Nfib. HES6 was highly

active in neuroblasts, and its target genes included Ascl1 and

Hes5 (Figures 5L and S7G). The expression patterns of Hes1

and Hes5 are consistent with ISH images taken from ABA (Fig-

ure S7H) (Lein et al., 2007).

We, thus, provide a comprehensive spatialy resolved tran-

scriptomic map of progenitor cell specification in the dorsal

midbrain.

Deciphering developmental disease susceptibility
using MOSTA
Developmental disorders have classically been regarded as

those producing gross neonatal manifestations. However,

many genetic conditions that present later have a develop-

mental, often unnoticed, component because their target genes

are also expressed during organogenesis (Boycott and Ardigo,

2018; Barnat et al., 2020). Nowadays, scRNA-seq datasets are

becoming widely used to predict the origin and mechanisms of

genetic diseases including developmental disorders (Watanabe

et al., 2019). However, the cell capture bias and lack of contex-

tual microenvironment limits the power of this approach. We

envisaged that MOSTA could be particularly useful in dissecting

the developmental origins of mammalian genetic diseases. To

demonstrate this, we took the 2,429 disease list (including

2,149 genes) from the developmental disorders genotype-to-
Figure 5. Spatial heterogeneity of progenitor cell types in the developi
(A) UMAP of the segmented cells from the dorsal midbrain regions of the E12.5 (E1

by the annotations and the stages (upper right). Endo, endothelial cell; Ery, ery

GABAergic neuron; GlioB, glioblast; Glu NeuB, glutamatergic neuroblast; Glu Ne

glia cell.

(B) Spatial visualization of the progenitor cells identified in (A). Cells are colored

(C) Line chart showing the indicated gene expression gradient along the rostro-c

(D) UMAP of the cell-cycle phases and pseudotime score of the progenitor cells

(E) Spatial visualization of the pseudotime score of the progenitor cells identified

(F) Line chart showing the pseudotime score along the rostro-caudal axis as ind

(G) Heatmaps illustrating the genes linked to cell fate divergence at the branch p

(H) Line chart showing the indicated gene expression gradient along the rostro-c

(I) Spatial visualization of Rspo1 and Fgf15 expressions at the indicated time poi

(J) Heatmap showing the normalized activity score of the indicated regulons for

(K) Spatial visualization of the activity of the HES1 and HES6 regulons at the ind

(L) Gene regulatory networks of HES1 (glioblast) and HES6 (neuroblast) regulons

genes were shown.

See also Figure S7.
phenotype database (DDG2P) (Wright et al., 2015), filtered

them to select the top 1,959 genes based on the expression

threshold in our dataset (Data S1), and then projected these

genes onto our spatial transcriptomicmaps for all developmental

time points. This showed enrichment in different tissues and or-

gans including brain, spinal cord, heart, liver, lung, connective

tissue, bone, and muscle (Figure 6A). Some genes were ex-

pressed in most or all embryonic stages, whereas others had a

restricted window. Similarly, although many genes were mainly

enriched in one tissue (in some cases, they were confined to a

specific region) or system, others were more widely distributed.

As informative examples, NKX2-1, which is mutated in brain-

lung-thyroid syndrome (Shetty et al., 2014), was mainly enriched

in brain (hippocampus and subpallium) and lung and Lmod3,

which is associated with nemaline myopathy (Berkenstadt

et al., 2018), was enriched in the skeletal muscle (Figure 6B).

To illustrate that MOSTA can help identify potentially targeted

cells in the affected tissues, we focused on Robinow syndrome

caused by mutations in WNT5A, a cytokine regulating the Wnt

signaling pathway (Wright et al., 2015). We observed that

Wnt5a localized in the craniofacial region, limb, genital ridge,

and brain (floor plate and neocortex) from multiple develop-

mental stages (Figure 6B), consistent with the disease pheno-

type (Menezes et al., 2010). We performed cell resolution reclus-

tering of the gene-by-cell expression matrices retrieved from the

maxilla and the limb of the E16.5 embryo. This identified different

cell types including mesenchymal cells, fibroblasts, endothelial

cells, keratinocytes, tenocytes, myoblasts, chondrocytes, and

others. We observed high Wnt5a expression in mesenchymal

cells and fibroblasts from the maxilla, whereas in the limb, it

was located mainly in mesenchymal cells (Figures 6C and 6D).

This suggests that the disease mechanisms may differ in the

two tissues. We then investigated Msx1, a homeobox gene en-

coding a transcription factor with known crosstalk with WNT5A

(Lin et al., 2011). Msx1 was expressed at different levels in mul-

tiple cell types of the maxilla including mesenchymal cells, but in

the limb, it was rather restricted to the latter cell type only. Simi-

larly, theMSX1 regulon wasmore enriched inmesenchymal cells

and fibroblasts in the maxilla, and mesenchymal cells in the limb

(Figures 6C and 6D). These observations are consistent with the

facial and digit abnormalities present in Msx1 knockout mice
ng dorsal midbrain
S3), E14.5 (E1S3), and E16.5 (E1S3, E2S6, and E2S7) stages. Cells are colored

throcyte; Fibro, fibroblast; GABA NeuB, GABAergic neuroblast; GABA Neu,

u, glutamatergic neuron; Micro, microglia; NeuB, neuroblast; and RGC, radial

by the annotations. Scale bars, 200 mm.

audal axis.

identified in (A). The arrow indicates the differentiation path.

in (A). Cells are colored by the pesudotime score. Scale bars, 200 mm.

icated in (E).

oint of radial glia cells to glioblasts (left) and neuroblasts (right).

audal axis.

nts of dorsal midbrain development. Scale bars, 500 mm.

the three progenitor cell types.

icated time points of dorsal midbrain development. Scale bars, 200 mm.

in the developing dorsal midbrain as visualized by Cytoscape. Selected target
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Figure 6. Association of MOSTA profiles with human developmental disorders

(A) Heatmap showing the normalized expression level of 1,959 genes selected from the developmental disorders genotype-to-phenotype database (DDG2P) in

the representative anatomic regions (brain, spinal cord, heart, liver, lung, connective tissue, bone, and muscle) in embryo sections from E9.5 to E16.5. Embryo

sections including E9.5 E1S1, E9.5 E2S1, E10.5 E1S1, E10.5 E2S1, E11.5 E1S1, E12.5 E1S1, E12.5 E2S1, E13.5 E1S1, E14.5 E1S1, E15.1 E1S1, and E16.5 E1S1

were used in this analysis.

(legend continued on next page)

ll
OPEN ACCESS

1788 Cell 185, 1777–1792, May 12, 2022

Resource



ll
OPEN ACCESSResource
(Jumlongras et al., 2001) and provide potential insight into the

mechanisms underlying the skeletal phenotypic features of Rob-

inow syndrome.

These results demonstrate the utility ofMOSTA for defining the

spatiotemporal windows of disease-related gene expression

during development and for establishing potential vulnerabilities.

DISCUSSION

Topographic transcriptomic information is fundamental for

dissection of the molecular events driving tissue patterning dur-

ing development. Stereo-seq is a DNB-based spatially resolved

transcriptomic technology with genome-wide coverage, cellular

resolution, high sensitivity, and large field of view. These param-

eters are all critical for accurately profiling the transcriptomic het-

erogeneity of relatively large mid- and late-stage mammalian

embryos. Moreover, Stereo-seq is an affordable technology.

The current DNB capture chip costs �220 RMB/mm2 ($35/

mm2) or �22,000 RMB/cm2 ($3,500/cm2). The high-density

RNA capture with DNB chip requires a sequencing depth of

around 150 gigabases/cm2, which costs �5,000 RMB (�$800)

based on current short-read sequencing platforms.

We have used Stereo-seq to create MOSTA, an expandable

panoramic and high-definition transcriptomic resource for un-

derstanding mouse organogenesis. MOSTA provides a detailed

topographic information about the stepwise emergence of tis-

sue-specific cell identities across the different stages of mouse

organogenesis. Examples of the latter include the identification

of neuroblast-rich and glioblast-rich domains within the ventric-

ular zone of the developing dorsal midbrain, which will give rise

to the specific patterning consisting of many cell subtypes.

To illustrate the utility of MOSTA for inferring the regulatory

mechanisms behind developmental processes, we have sys-

tematically dissected the spatially resolved gene regulons

driving organogenesis. This identified tissue- and area-specific

transcription factors and their associated targets across different

embryonic stages. Although the function of many of the tran-

scription factors controlling these regulons has been previously

reported, we have identified the spatial domains in which they

act. Importantly, Stereo-seq also captures intronic transcripts,

making it possible to calculate spatial RNA velocity with single-

cell resolution, which as in scRNA-seq studies (La Manno et

al., 2018; Qiu et al., 2022b), can facilitate the study of cell fate

transitions. Using spatial RNA velocity, we have generated tran-

scriptomic maps of tangentially migratory interneurons in the

developing cerebral cortex. In addition, we have projected the

expression of developmental disease loci (including monogenic

diseases involving transcription factors or morphogens) onto our

spatial maps, highlighting a potentially relevant functional

connection between Wnt5 and Msx1 in different cell types but
(B) Spatial visualization of the expression of the indicated genes related to the sel

syndrome, and nemaline myopathy) in embryos from E9.5 to E16.5. Disease-re

including E9.5 E1S1, E10.5 E1S1, E11.5 E1S1, E12.5 E1S1, E13.5 E1S1, E14.5 E

(C) Spatial visualization of cell types (left),Wnt5a expression (middle), andMSX1 re

Scale bars, 250 mm.

(D) Left: bubble plot showing the normalized expression ofWnt5a andMsx1 in the

the activity of the MSX1 regulon in the indicated cell types of the maxilla (upper)
especially in mesenchymal cells in Robinow syndrome. Mice

and humans differ in multiple aspects of normal physiology

and disease; hence, there are caveats, but this approach clearly

has the potential to uncover disease mechanisms. Systematic

independent explorations using our interactive portal will provide

users with insights to unlock the black boxes of mouse embryo-

genesis and developmental disorders. In this regard, expansion

with datasets from genetically engineered mice that bear lineage

tracing cassettes, mimic developmental disorders, or cause

alteration of developmental pathways will be useful to test and

refine any models of normal and abnormal development gener-

ated with MOSTA.

Larger Stereo-seq chips will enable the profiling of embryos

from other mammalian species including primates. The inte-

grated knowledge from multiple species could be instrumental

in discerning the determinants of spatiotemporal differences in

tissue patterning. Forthcoming optimizations of Stereo-seq will

enhance gene capture, further facilitating the assignment of indi-

vidual cell identities and states in these panoramic maps. Simi-

larly, oligonucleotide-labeled antibodies (Stoeckius et al., 2017)

could be incorporated into the DNB for simultaneous protein

detection of surface markers, which would be useful for easier

identification of specific small cell types (e.g., infiltrating immune

cells). Besides the study of development, Stereo-seq and its

future refinements have the ability to transform multiple other

research fields. Due to its characteristics and applicability, Ste-

reo-seq also has the potential to move into routine clinical

practice as an extraordinary diagnostic tool complementary to

medical imaging and histopathology data.

Limitations of the study
The high resolution of Stereo-seq allows efficient image-based

cell segmentation, but in some cases, where multiple cell types

are close to each other, particularly smaller cell types like im-

mune cells, cell segmentation may be imperfect. Similarly, Ste-

reo-seq has a genome-wide coverage, but due to limitations in

capture, relevant genes with low expression may be missed.

This is mitigated because the large field-of-view facilitates the

profiling of enough cell numbers to power the statistical analysis.

Importantly, we have profiled a total of 53 sagittal sections cor-

responding to an overall area of 23.4 cm2, but more sections

may still be necessary to provide adequate coverage of all

regional tissue types. The incomplete sampling could also affect

the inference of relationship of anatomic regions and develop-

mental trajectories. Future expansions of MOSTA will help

address this caveat, and the addition of enough sections will

facilitate 3D transcriptomic rendering that is not possible with

the current dataset. Meanwhile, despite the remarkable utility

for unveiling the molecular logic of embryogenesis through anal-

ysis of genes, gene modules, or regulons, special attention
ected human developmental disorders (Robinow syndrome, brain-lung-thyroid

lated anatomic regions are annotated in the figures. Representative sections

1S1, E15.1 E1S1, and E16.5 E1S1 were shown. Scale bars, 1 mm.

gulon activity (right) at the maxilla (upper) and limb (bottom) from E16.5 (E1S3).

indicated cell types in maxilla (upper) and limb (bottom). Right: barplot showing

and limb (bottom) from E16.5 (E1S3).
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should be paid to validations including functional assays. In the

case of regulons, integration with scATAC-seq datasets can

help address this issue, but we anticipate that future modifica-

tions of Stereo-seq will allow direct spatial measurements of

chromatin accessibility. Finally, although we have developed al-

gorithms including the SCC for the analyses in this study, others

may be needed for a broader range of applications in various tis-

sues from different species.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-DIG-AP fab antibody Roche Cat#11093274910; RRID:AB_2734716

Biological samples

Adult mouse olfactory bulb This study N/A

Adult mouse brain (12 weeks) This study N/A

E9.5 mouse embryos This study N/A

E10.5 mouse embryos This study N/A

E11.5 mouse embryos This study N/A

E12.5 mouse embryos This study N/A

E13.5 mouse embryos This study N/A

E14.5 mouse embryos This study N/A

E15.5 mouse embryos This study N/A

E16.5 mouse embryos This study N/A

Chemicals, peptides, and recombinant proteins

Tissue-Tek OCT Sakura Cat#4583

T4 ligase NEB Cat#M0202V

AMPure XP Beads Vazyme Cat#N411-03

Nucleic Acid Dye Thermo Cat#Q10212

20 3 SSC Thermo AM9770

Pepsin Sigma P7000

RNase inhibitor NEB M0314L

SuperScript II Invitrogen Cat#18064-014

Exonuclease I NEB M0293L

KAPA HiFi Hotstart Ready Mix Roche KK2602

Qubit� dsDNA Assay Kit Thermo Q32854

TRIzol� Reagent INVITROGEN Cat#15596-026

Paraformaldehyde SIGMA Cat#158127

Formamide SIGMA Cat#F9037

EDTA INVITROGEN Cat#15575-038

5 M NaCl AMBION Cat#AM9759

RNase A Sigma Cat#R4642

blocking buffer Roche Cat#11096176001

BM purple Roche Cat#11442074001

Tris-HCL pH-7.5 VWR Cat#100216-512

MgCl2 Ambion AM9530G

Tween 20 Sigma P9416

Deposited data

HDST data of mouse olfactory bulb GEO GEO: GSE130682

Seq-Scope data of liver GEO GEO: GES169706

DBiT-Seq data of mouse embryo GEO GEO: GSE137986

SLIDE-seqV2 data of mouse olfactory bulb Broad Stickels et al., 2021

Visium data of mouse olfactory bulb GEO GEO: GSE153859

Single-cell data of adult mouse brain Linnarsson lab http://mousebrain.org/adolescent/

Single-cell data ofmouse developing cortex GEO GEO: GSE153164

(Continued on next page)

Cell 185, 1777–1792.e1–e7, May 12, 2022 e1

http://mousebrain.org/adolescent/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Single-cell data of mouse developing

mouse brain

Linnarsson lab http://mousebrain.org/development/

smFISH data of adult mouse brain Linnarsson lab http://linnarssonlab.org/osmFISH/

availability/

ABA ISH data Allen Institute https://mouse.brain-map.org/

Developmental Disorders Genotype-to-

Phenotype database (DDG2P)

Wellcome Trust Sanger Institute https://panelapp.genomicsengland.co.uk/

panels/484/

Raw data of Stereo-seq This study CNGB: CNP0001543

Processed data of Stereo-seq This study https://db.cngb.org/stomics/mosta/

Oligonucleotides

DNB library oligo1:

TGTGAGCCAAGGAGTTGAACTGCTGA

CGTACTGAGAGGCATGGCGACCTTAT

CAGNNNNNNNNNNNNNNNNNNNNNN

NNNTTGTCTTCCTAAGACCG

Sangon N/A

DNB library oligo2:

/5phos/CTTGGCCTCCGACTTAAGTCG

GATCGTAGCCATGTCGTTC

Sangon N/A

Splint oligo:

TCGGAGGCCAAGCGGTCTTAGGAA

Sangon N/A

CID sequencing primer:

CTGCTGACGTACTGAGAGGCATGGC

GACCTTATCAG

Sangon N/A

DNB library F:

/5phos/TGTGAGCCAAGGAGT

Sangon N/A

DNB library R:

GAACGACATGGCTA

Sangon N/A

Capture oligo:

/5phos/TTGTCTTCCTAAGACNNNNNN

NNNNTTTTTTTTTTTTTTTTTTTTTV

Sangon N/A

Stereo-seq-TSO:

CTGCTGACGTACTGAGAGGC/rG//

rG//iXNA_G/

Sangon N/A

cDNA PCR primer:

CTGCTGACGTACTGAGAGGC

Sangon N/A

Stereo-seq-library-F:

/5phos/CTGCTGACGTACTGAGAGG*C*A

Sangon N/A

Stereo-seq-library-R:

GAGACGTTCTCGACTCAGCAGA

Sangon N/A

Stereo-seq-library-splint-oligo:

GTACGTCAGCAGGAGACGTTCTCG

Sangon N/A

Stereo-seq-read1:

CTGCTGACGTACTGAGAGGCATGG

CGACCTTATCAG

Sangon N/A

Stereo-seq-MDA-primer:

TCTGCTGAGTCGAGAACGTC

Sangon N/A

Stereo-seq-read2:

GCCATGTCGTTCTGTGAGCCAAGGAGTT

Sangon N/A

Shh_F:

GATGAGGAAAACACGGGAGC

Sangon N/A

Shh_R:

ACCCGGTTGATGAGAATGGT

Sangon N/A

(Continued on next page)
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REAGENT or RESOURCE SOURCE IDENTIFIER

Kitl_F:

GGGCTTCATTTGCTGTCTGT

Sangon N/A

Kitl_R:

CTTTGCGGCTTTCCCTTTCT

Sangon N/A

Sox2_F:

TGATGGAGACGGAGCTGAAG

Sangon N/A

Sox2_R:

TGGAGTGGGAGGAAGAGGTA

Sangon N/A

Pantr1_F:

GCCACGCGAGGTATTTGAAA

Sangon N/A

Pantr1_R:

GCACCATTTCATCACATCAGC

Sangon N/A

Software and algorithms

SAW https://github.com/BGIResearch/SAW V2.1.0

pySCENIC https://github.com/aertslab/pySCENIC/ V0.11.2

Hotspot http://www.github.com/Yoseflab/Hotspot V0.9.1

Monocle3 https://github.com/cole-trapnell-lab/

monocle3

V1.0.0

Tangram https://github.com/broadinstitute/Tangram V1.0.2

Squidpy https://github.com/theislab/squidpy V1.1.2

Scikit-image https://scikit-image.org/ V0.18.1

Seurat https://satijalab.org/seurat/ V4.0.5

Scanpy https://github.com/theislab/scanpy/ V1.8.2

Dynamo https://github.com/aristoteleo/

dynamo-release

V1.0.0

OpenCV https://github.com/skvark/opencv-python V4.5.4

STAR https://github.com/alexdobin/STAR V2.7.10a

Rearrr https://github.com/LudvigOlsen/rearrr V0.3.0

Signac https://satijalab.org/signac/ V1.5.0

ChromVAR https://github.com/GreenleafLab/

chromVAR

V1.16.0
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for the resources and reagents may be directed to the corresponding author Xun Xu (xuxun@

genomics.cn)

Material availability
All materials used for Stereo-seq are commercially available.

Data and code availability
All raw data generated by Stereo-seq have been deposited to CNGB Nucleotide Sequence Archive (accession code: CNP0001543

(https://db.cngb.org/search/project/CNP0001543). All data were analyzed with standard programs and packages, as detailed

above. Custom code supporting the current study is available at https://github.com/BGIResearch/SAW. Additional information

required to reanalyze the data reported in this paper is available from the lead contact upon request.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animal
All relevant procedures involving animal experiments presented in this study are compliant with ethical regulations regarding animal

research and were conducted under the approval of the Animal Care and Use committee of the Guangzhou Institutes of Biomedicine

and Health, Chinese Academy of Sciences (license number IACUC2021002). Mouse olfactory bulb and brain were dissected from

12-week-old C57BL/6J female mice. E9.5, E10.5, E11.5, E12.5, E13.5, E14.5, E15.5 and E16.5 embryos were collected from preg-

nant C57BL/6J female mice. After collection, tissues were snap-frozen in liquid nitrogen prechilled isopentane in Tissue-Tek OCT

(Sakura, 4583) and transferred to a -80�C freezer for storage before the experiment. Cryosections were cut at a thickness of

10 mm in a Leika CM1950 cryostat. Adult mouse olfactory bulb and mouse hemibrain were cut coronally, mouse embryos were

cut sagittally.

METHOD DETAILS

Stereo-seq chip preparation
Generation of Stereo-seq chips

To generate the patterned array, we synthesized two oligo sequences: one containing 25 random deoxynucleotides DNB library

oligo1 and the other a fixed sequence with 5’ phosphorylated DNB library oligo2. These two oligos were ligated with splint oligo1

at 37�C for 2 hours using T4 ligase (NEB; 1U/ml T4 DNA ligase and 13 T4 DNA ligation buffer). The products were purified using

the AMPure XP Beads (Vazyme, N411-03) and then PCR amplified with the following steps: 95�C for 5 minutes, 12 cycles at 98�C
for 20 seconds, 58�C for 20 seconds, 72�C for 20 seconds and a final incubation at 72�C for 5 minutes. The PCR products were pu-

rified using the AMPure XP Beads. DNB were then generated by rolling circle amplification and loaded onto the patterned chips ac-

cording to the MGI DNBSEQ-Tx sequencer manual. Next, to determine the distinct DNB-CID sequences at each spatial location,

single-end sequencing was performed using a CID sequencing primer in MGI DNBSEQ-Tx sequencer with SE25 sequencing strat-

egy. After sequencing, the capture oligo including 22 nt poly-T and 10 nt UMI was hybridized with the DNB in 53 SSC buffer at 37�C
for 30minutes, and then incubated with T4 ligase (NEB, 1 U/ml T4 DNA ligase, 13 T4 DNA ligation buffer and 0.5%PEG2000) at 37�C
for 1 hour. This produces capture probes containing a 25 nt CID barcode, a 10 nt UMI and a 22 nt poly-T ready for poly-A RNA cap-

ture. A detailed step-by-step protocol describing this procedure is included in the MOSTA website (https://db.cngb.org/

stomics/mosta).

Calling of CID

CID sequences together with their corresponding coordinates for all DNBwere determined using a base calling method according to

manufacturer’s instruction of MGI DNBSEQ-Tx sequencer. After sequencing, the capture chip was split into smaller size chips

(5 mm 3 10 mm, 10 mm 3 10 mm, 10 mm 3 20 mm) ready for use. At this stage, we filtered out all duplicated CID that correspond

to non-adjacent spots.

Stereo-seq library preparation and sequencing
Tissue processing

Tissue sections were adhered to the Stereo-seq chip surface and incubated at 37�C for 3-5 minutes. Then, the sections were fixed in

methanol and incubated for 40 minutes at -20�C before Stereo-seq library preparation. Where indicated, the same sections were

stained with nucleic acid dye (Thermo fisher, Q10212) and imaging was performed with a Ti-7 Nikon Eclipse microscope prior to

in situ capture at the channel of FITC.

In situ reverse transcription

After washed with 0.13 SSC buffer (Thermo, AM9770) supplemented with 0.05 U/ml RNase inhibitor (NEB, M0314L), tissue sections

placed on the chip were permeabilized using 0.1% pepsin (Sigma, P7000) in 0.01MHCl buffer, incubated at 37�C for 12minutes and

then washed with 0.1 3 SSC buffer (Thermo, AM9770) supplemented with 0.05 U/ml RNase inhibitor (NEB, M0314L). RNA released

from the permeabilized tissue and captured by the DNB was reverse transcribed overnight at 42�C using SuperScript II (Invitrogen,

18064-014, 10 U/ml reverse transcriptase, 1 mM dNTPs, 1 M betaine solution PCR reagent, 7.5 mMMgCl2, 5 mM DTT, 2 U/ml RNase

inhibitor, 2.5 mM Stereo-seq-TSO and 1 3 First-Strand buffer). After reverse transcription, tissue sections were washed twice with

0.1 3 SSC buffer and digested with Tissue Removal buffer (10 mM Tris-HCl, 25 mM EDTA, 100 mM NaCl, 0.5% SDS) at 37�C for

30 minutes. cDNA-containing chips were then subjected to Exonuclease I (NEB, M0293L) treatment for 1 hour at 37�C and were

finally washed once with 0.1x SSC buffer.

Amplification

The resulting cDNAs were amplified with KAPA HiFi Hotstart Ready Mix (Roche, KK2602) with 0.8 mM cDNA-PCR primer. PCR re-

actions were conducted as follows: incubation at 95�C for 5 minutes, 15 cycles at 98�C for 20 seconds, 58�C for 20 seconds,

72�C for 3 minutes and a final incubation at 72�C for 5 minutes.

Library construction and sequencing

The concentrations of the resulting PCR products were quantified by Qubit� dsDNA Assay Kit (Thermo, Q32854). A total of 20 ng of

DNA were then fragmented with in-house Tn5 transposase at 55�C for 10 minutes, after which the reactions were stopped by the
e4 Cell 185, 1777–1792.e1–e7, May 12, 2022
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addition of 0.02% SDS and gently mixing at 37�C for 5 minutes after fragmentation. Fragmented products were amplified as

described below: 25 ml of fragmentation product, 1 3 KAPA HiFi Hotstart Ready Mix and 0.3 mM Stereo-seq-Library-F primer,

0.3 mM Stereo-seq-Library-R primer in a total volume of 100 ml with the addition of nuclease-free H2O. The reaction was then run

as: 1 cycle of 95�C 5 minutes, 13 cycles of 98�C 20 seconds, 58�C 20 seconds and 72�C 30 seconds, and 1 cycle of 72�C 5minutes.

PCR products were purified using the AMPure XP Beads (0.63 and 0.153), used for DNB generation and finally sequenced on MGI

DNBSEQ-Tx sequencer with read length indicated in Table S1.

In situ hybridization
Preparation of probes and sections

Total RNA was prepared using Trizol from the whole embryos of E9.5 and E11.5 respectively and were further used as template for

preparing probes. After reverse transcription using polyT, target genes were amplified using oligonucleotides harboring T7 promoter.

The PCR products were used as template to synthesize Digoxin-labelled antisense RNA probes by in vitro transcription. Cryosec-

tions were sagittally cut into 10 mm thickness of slides in a Leika CM1950 cryostat ready to use for hybridization.

Hybridization

Slides were incubated at 37�C for 3 minutes, then were fixed in 4%paraformaldehyde and incubated for 1 hour at room temperature.

Slides were washed by PBS supplemented with 0.1% Tween for 5 minutes for three times and permeabilized in PBS supplemented

with 0.3% Triton for 20 minutes at room temperature. For pre-hybridization, slides were placed into the hybridization buffer (10%

dextran, 5 3 SSC, 50% formamide, 0.1% Tween, 1 mg/ml yeast RNA, 100 mg/ml heparin, 1 3 Denhardt’s solution, 0.1% CHAPS

and 5mM EDTA) at 60�C for 1 hour. After pre-hybridization, slides were hybridized with 500 ng/ml RNA probes in hybridization buffer

overnight at 60�C. The next day, slides were washed by gradient SSC buffer containing 0.1% Tween 20 at 60 �C, which include twice

in 53 SSC for 30minutes, 23 SSC for 30minutes, 0.23 SSC for 30minutes, and finally cooling to room temperature with 0.23 SSC

for 30 minutes.

Staining

Next, slideswerewashed twicewith TNE buffer (10mMTris-pH7.5, 500mMNaCl, 1mMEDTA) for 10minutes, and further subjected to

RNase A (Sigma, R4642) treatment in TNE buffer for 1 hour at room temperature. After washing twice with TNE buffer for 10 minutes,

slideswerewashed three timeswithMABbuffer (100mMmaleicacid, 150mMNaCl, 0.1%Tween) for5minutes,andwere further treated

inblockingbuffer (Roche, 11096176001) at room temperature for 1hour. After blocking, slideswere incubatedwithAnti-DIG-AP fabanti-

body (Roche, 11093274910), andwashedfive timeswithMABbuffer for 10minutesat roomtemperature, followedbywashing twicewith

APbuffer (100mMTrispH9.5, 50mMMgCl2, 100mMNaCl and0.1%Tween) for 10minutes. Finally, slideswere incubated inBMpurple

(Roche, 11442074001) for staining. The resultant stained slides were imaged with a Ti-7 Nikon Eclipse microscope.

QUANTIFICATION AND STATISTICAL ANALYSIS

Stereo-seq raw data processing
Fastq files were generated using a MGI DNBSEQ-Tx sequencer. CID and MID are contained in the read 1 (CID: 1-25 bp, MID:

26-35 bp) while the read 2 consist of the cDNA sequences. CID sequences on the first reads were first mapped to the designed co-

ordinates of the in situ captured chip achieved from the first round of sequencing, allowing 1 basemismatch to correct for sequencing

andPCR errors. ReadswithMID containing either N bases ormore than 2 baseswith quality score lower than 10were filtered out. CID

andMID associated with each read were appended to each read header. Retained reads were then aligned to the reference genome

(mm10) using STAR (Dobin et al., 2013) and mapped reads with MAPQ > 10 were counted and annotated to their corresponding

genes). UMI with the same CID and the same gene locus were collapsed, allowing 1 mismatch to correct for sequencing and

PCR errors. Finally, this information was used to generate a CID-containing expression profile matrix. The whole procedure was in-

tegrated into a publicly available pipeline SAW available at https://github.com/BGIResearch/SAW.

Image-based single cell segmentation and diffusion analysis
Cell segmentation with nucleic acid staining

We leveraged nucleic acid staining from the same section to segment cells by projecting the staining image to the Stereo-seq chips.

To achieve this, we summed the total UMI in each DNB spot which harbors a specific spatial coordinate to generate a spatial density

matrix, then converted thematrix into an imagewhere each pixel corresponds to one DNB and total UMI of DNB spot the grayscale of

the pixel. We then registered the DNB image with nucleic acid staining image manually. After alignment, we applied Scikit-image

package (V0.18.1) to perform cell segmentation analysis (Van der Walt et al., 2014). Briefly, the background of the staining image

was removed with a global threshold approach, then watershed algorithm was applied to obtain single cell segmentations. The num-

ber of markers required for the watershed algorithm were obtained through Gaussian-weighted local threshold binarization with

block size of 41 and offset of 0.003. We then exacted Euclidean distance transformation (with distance of 13 or 15) from the back-

ground removed images. For each of the segmented cell, UMI from all DNBwithin the corresponding segmentation were aggregated

per-gene and then summed to generate a cell by gene matrix for downstream analysis. The centroid of each cell was determined

using rearrr (https://github.com/LudvigOlsen/rearrr).
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Diffusion analysis

We assessed the lateral diffusion in Stereo-seq based on the spatial distribution of three transcript sets: (1) known nuclear localized

long non-coding RNAsMalat1 and Neat1; (2) Mitochondrial RNAs and (3) Vip transcripts that specifically expressed in Vip+ interneu-

rons. For (1) and (2), we sampled 100 cells from all the segmented cells, and calculated themean distance between each transcript to

the centroid of each cell. After repeating 50 times, the distribution of (1) and (2) were plot. For (3), we compared the lateral diffusion of

Stereo-seq with published smFISH data downloaded from Linnarsson Lab website (http://linnarssonlab.org/osmFISH/). Vip+ inter-

neurons were selected either based on cell segmentation-based clustering (Stereo-seq) or the reported annotations (smFISH). The

diffusion distance was further determined based on the distance between Vip transcripts with the centroid of each Vip+ interneurons.

Stereo-seq benchmarking analysis and clustering
Comparison of Stereo-seq with published methods

Expression profile matrix of mouse olfactory bulb was divided into non-overlapping bins covering an area of X3 X DNB, with X ∈ (3,

14, 140) and the transcripts of the same gene were aggregated within each bin. HDST data were taken from GSE130682 (Vickovic

et al., 2019), SLIDE-seqV2 data from the Single Cell Portal of the Broad Institute (Stickels et al., 2021), DBiT-seq data from

GSE137986 (Liu et al., 2020), Visium data from GSE153859 (Lebrigand et al., 2020), and Seq-Scope data from GSE169706 (Cho

et al., 2021). For Figure 1C, to ensure that proper comparisons were made, the data of Stereo-seq were binned into bin 3 (3 3 3

DNB, �2 mm), bin 14 (14 3 14 DNB, �10 mm) or bin 140 (140 3 140 DNB, �100 mm).

Spatially constrained clustering (SCC)

Expression profile matrix of adult mouse olfactory bulb were binned into bin 14, mouse brain or mouse embryo were binned into bin

50 (503 50 DNB) and the transcripts of the same gene were aggregated within each bin. Next, data were log-normalized in dynamo

and SCC was performed using dyn.tl.scc and dyn.tl.purity functions. In brief, to include spatial information during clustering, we built

a spatial k-nearest neighbor graphGk1
spatial (k1 is by default set to be 8 as each bin has 8 nearest spatial neighbors) using Squidpy (Palla

et al., 2021) and then took the union with the k-nearest neighbor graphGk2
expression based on transcriptomic data (k2 is by default set to

be 30). The combined graph (Gcombined = Gk1
spatialWGk2

expression) was then used as input for leiden clustering. Further, each cluster was

annotated based on the cluster specific markers identified by the rank_genes_groups function of SCANPY (Wolf et al., 2018) using

default parameters as well as the anatomic annotation based on eHistology Kaufman Annotations (http://www.emouseatlas.org/

emap/home.html) or Allen Brain Atlas (http://mouse.brain-map.org/). Where indicated, the selected organs were further subjected

to recluster using SCC.

Unsupervised clustering of the segmented cells

For the adult mouse hemibrain, cells containing a total number of detected genes < 200, and those with a total number of detected

genes ranking in the top 0.1% were filtered out. The resulting cells were further processed by Seurat (Hao et al., 2021) followed by

SCTransform, scaling, feature genes selection, PCA dimension reduction and clustering with resolution parameter set at 3.8. For the

E16.5 whole mouse embryo, cells with a total number of detected genes < 200 were filtered out, and further processed by Seurat

followed by same procedure described above but with resolution parameter set at 2.5. The data of the E16.5 brain was processed

likewise but with resolution parameter 5.0. For the mouse developing dorsal midbrain, segmented cell data from E12.5 (E1S3), E14.5

(E1S3), E16.5 (E1S3, E2S6, E2S7) were subjected to the same procedure with resolution parameter set at 0.5.

Spatially resolved gene regulatory networks
The analysis of regulon activity was performed by following the standard SCENIC pipeline (Aibar et al., 2017). Binned (bin 50) or

segmented cell expression data matrix was used as the input to SCENIC. The expression matrix was subjected to GENIE3 algorithm

analysis to reconstruct the co-expressed gene network for each transcription factor. Transcription factors co-expression modules

were then analyzed by RcisTarget and their potential targets were further filtered with default parameters. The filtered potential tar-

gets were used to build the regulons. The regulon activity (area under the curve) was analyzed with AUCell and the active regulons

were determined with AUCell default threshold. The activity of regulons for each bin was then mapped to the physical space. The

gene network for Figure 5G was constructed by selecting the target genes of corresponding transcription factors related to gliogen-

esis or neurogenesis, and further visualized by Cytoscape.

Identification of spatially auto-correlated gene or regulon modules
Spatially auto-correlated gene or regulonmoduleswere identified usingHotspot (DeTomaso andYosef, 2021). The expressionmatrix

for the top 5,000 variable genes and all regulon activity matrix of each embryo were used as the input. For the genemodules, the data

were normalized by the total UMI number of each bin, from which a k-nearest neighbor (knn) graph of genes was created using the

create_knn_graph function with the parametes: n_neighbors = 30 (for regulon, n_neighbors = 10), then genes or regulons with sig-

nificant spatial autocorrelation (FDR < 0.05) were kept for further analysis. The modules were identified using the create_modules

with the parameters:min_gene_threshold = 20 and fdr_threshold = 0.05 (for the regulon:min_gene_threshold = 5 and fdr_threshold =

0.05).
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Cell type mapping
To validate the cell type identity characterized in our adult mouse hemibrain section, annotated scRNA-seq profiles of the adult

mouse brain downloaded from Linnarsson Lab website (http://mousebrain.org/adolescent/) (Zeisel et al., 2018) were used for com-

parison. In brief, cells from Stereo-seq and scRNA-seq were subjected to SCTransform, FindIntegrationAnchors and IngegrateData

using reciprocal principal component in Seurat, and were further co-embedded in low-dimension space via UMAP. After co-embed-

ding, a knn based method was used to connect cell clusters between Stereo-seq and scRNA-seq. Briefly, for a random subset of

80% of cells in each cluster of the Stereo-seq data, we identified five closest neighbor cells from the adult mouse hemibrain

scRNA-seq data in the co-embedding. We next calculated the cell type proportion of such neighbors mapped to each cell clusters

of the scRNA-seq data. After repeating 500 times, the median cell type proportions were then used as cell-type probability score

between Stereo-seq clustering and scRNA-seq clustering results. For Figure S1I, cell types with probability < 0.05 were filtered

out. For Figure S1J, cell types with probability < 0.1 were filtered out.

Alignment of single-cell transcriptome with Stereo-seq by Tangram
To validate the cell type distribution patterns derived from Stereo-seq, we used Tangram to map the annotated scRNA-seq mouse

embryonic brain data downloaded from Linnarsson Lab (http://mousebrain.org/development/) (La Manno et al., 2021), or annotated

scRNA-seq mouse developing cortex from GSE153164. In brief, marker genes in the single cell clusters were determined by

FindAllMarkers function in Seurat, the top 20 DEG based on fold change were selected as training genes for Tangram to project

the single cell to Stereo-seq. Then, the normalized cell type probabilities were visualized in Stereo-seq data.

Reanalysis of scATAC-seq data
scATAC-seq data of mouse developing cortex were retrieved from GSE153164 (Di Bella et al., 2021). Cell type annotation for scA-

TAC-seq profiled were transfered from scRNA-seq via the TransferData function in Seurat. Then, Signac (Stuart et al., 2021) was em-

ployed to analyze the scATAC-seq data using standard process. The transcription factor deviation score was calculated using

ChromVAR (Schep et al., 2017).

Inference of developmental trajectories
Embryo developmental trajectory analysis

To construct embryo-wide developmental trajectory during organogenesis, we integrated and co-embedded bins from representa-

tive sections (E9.5 E1S1, E9.5 E2S1, E10.5 E1S1, E10.5 E2S1, E11.5 E1S1, E11.5 E1S2, E12.5 E1S1, E12.5 E2S1, E13.5 E1S1, E13.5

E1S2, E14.5 E1S1, E14.5 E1S2, E15.5 E1S1, E15.5 E1S2, E16.5 E1S1, E16.5 E1S2) at consecutive time points using Seurat with

FindIntegrationAnchors and IntegrateData functions with default settings. After integration, edge weight between organ across em-

bryonic stages were calculated as described in TOME (Qiu et al., 2022a). At last, continuous trajectory with edges weight > 0.2 from

the UMAP embedding were retained for the resulting directed graph.

Spatial RNA velocity analysis

Interneuron RNA velocity analysis (Figure 4) was performed using dynamo (Qiu et al., 2022b) following the tutorial (https://

dynamo-release.readthedocs.io/). Unspliced and spliced RNA for each cell were extracted from the E16.5 telencephalon with

SAW. Inhibitory neurons were extracted according to the tangram score of forebrain GABAergic neuroblasts or forebrain

GABAergic neurons. The data matrix was then processed by dynamo to normalize the expression, select feature genes and perform

PCA dimension reduction, followed by default parameters to estimate the kinetic parameters and gene-wise RNA velocity vectors

that were then projected to the physical space. Specifically, the ‘‘Fokker-Planck’’ kernel implemented in dynamo was used for pro-

jection of high-dimensional RNA velocity vectors to physical space. Streamlines of only inhibitory neurons were visualized. To facil-

itate the understanding of gene expression dynamics over space, we reconstructed the continuous vector field in the PCA space, and

then utilized hodge decomposition which takes the simplicial complexes (a sparse directional graph) constructed based on the

learned vector field function to infer the vector field based pseudotime (vf pseudotime). At last, we also illustrated the kinetics of

all high PCA loading genes along the vf pseudotime.

Monocle 3 analysis

Formidbrain developmental trajectory (Figure 5), after initial data processing, DEG identification and cell type annotation, the putative

radial glia cell, glioblast and neuroblast clusters were subjected to pseudotime analysis bymonocle 3 (Cao et al., 2019). DEG of radial

glia cell, glioblast and neuroblast were visualized by heatmap ordered by the pseudotime trajectory.

Spatial gene enrichment analysis of genes associated with human developmental disorders
Monogenic disease information was retrieved from DDG2P (v2.29) (Wright et al., 2015). After filtering out low-expressed genes with

counts per million less than 1 in all anatomic regions, a list of total 1,919 genes were kept for further analysis. The expression level of

indicated organs at selected time point were aggregated, Z score normalized, and further visualized by as scatterplots with the phys-

ical information.
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Figure S1. Performance of stereo-seq, related to Figures 1 and 2

(A) Stereo-seq chips of different sizes ranging from 50 mm2 to 174.24 cm2.

(B) Distribution of UMI (left) and genes (right) from two adjacent mouse olfactory bulb sections.

(C) Pearson correlation coefficient (R2 = 0.9666) of pseudo-bulk profiles from the two mouse olfactory bulb sections.

(D) Unsupervised SCC of the two mouse olfactory bulb sections analyzed by Stereo-seq data at bin 14 resolution. Bins are colored by their annotation. ONL,

olfactory nerve layer; OPL, outer plexiform layer; GL, glomerular layer; GCL-D, granular cell zone deep; GCL-E, granular cell layer externa; GCL-I, granular cell

layer internal; IPL, internal plexiform layer; ML, mitral layer; and SEZ, subependymal zone. Scale bars, 500 mm.

(E) Spatial visualization of Pcp4 and Slc17a7 expressions of the twomouse olfactory bulb sections and reported HDST (Vickovic et al., 2019), Slide-seqV2 (Stick-

els et al., 2021), and ISH images of the adult mouse olfactory bulb taken from ABA (Lein et al., 2007). Scale bars, 500 mm.

(F) Violin plots showing the number of detected UMI (left) and genes (right) for the segmented cells of adult mouse hemibrain.

(G) Distribution of nuclear localized RNA (Malat1 and Neat1) and mitochondria RNA (cytoplasmic) of the sampled cells, each line representing each sampling.

(H) Comparison of lateral diffusion distance for Vip transcripts to the centroid of Vip+ GABAergic interneurons between the adult mouse hemibrain Stereo-seq

data and a reported mouse somatosensory cortex smFISH data (Codeluppi et al., 2018).

(I) UMAP visualization of the segmented cells from the adult mouse hemibrain section. Cells were colored by their annotation. EX, excitatory glutamatergic

neuron; IN, GABAergic interneuron; DA, dopaminergic neuron; GN DG, granule cell of dentate gyrus; Astr, astrocyte; Micro, microglia; OPC, oligodendrocyte

precursor cell; Oligo, oligodendrocyte; SMC, smooth muscle cell; Ery, erythrocyte; and Endo, endothelial cell.

(J) Heatmap showing the normalized expression of selected marker genes for the indicated cell types of the mouse hemibrain section shown in Figure 2C.

(K) Correspondence between the indicated cell types identified by Stereo-seq and the cell clusters identified by reported scRNA-seq (Zeisel et al., 2018).

(L) Correspondence between the indicated cell subtypes identified by Stereo-seq and the cell subtypes identified by reported scRNA-seq (Zeisel et al., 2018).
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Figure S2. Spatially resolved transcriptomic atlas of mouse organogenesis, related to Figure 3
(A) Violin plots showing the number of detected UMI (left) and gene (right) per bin 50 for the E9.5–E16.5 sections shown in Figure 3A.

(B) Distribution of number of detected UMI (left) and gene (right) per bin 50 for the E9.5–E16.5 sections shown in Figure 3A.

(C) Upper: unsupervised SCC of mouse embryo sections across E9.5–E16.5. Embryo sections including E9.5 E2S1, E10.5 E2S1, E11.5 E1S2, E12.5 E2S1, E13.5

E1S2, E14.5 E1S2, E15.5 E1S2, and E16.5 E1S2 were shown. Bins are colored by their annotation. Bottom: unsupervised SCC of the mouse embryo sections at

(legend continued on next page)
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E16.5. Thirteen sections from the same E16.5 embryo including E2S1–E2S13 are shown. Bins are colored by their annotation. The distance of each section from

the midline is indicated. Scale bars, 1 mm.

(D) Directed acyclic graph showing inferred relationships between anatomic regions across sections from E9.5 to E16.5 shown in Figures 3A and S2C. Each row

corresponds to one of the anatomic regions shown in Figures 3A and S2C, and the columns to the developmental stages spanning E9.5 to E16.5.
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Figure S3. Spatiotemporal dynamics of regional specification, related to Figure 3

(A) Spatial visualization of the indicated gene expression for smooth muscle (Acta2+), muscle (Myog+), epidermis (Krt5+), lung (Sftpc+), liver (Afp+), and cartilage

primordium (Col2a1+) in the sections shown in Figure 3A. Scale bars, 2 mm.

(B) Spatial visualization of the indicated gene expression for meninges (Atp1a2+), spinal cord (Hoxb8+), and lung (Sftpc+) in 13 sections of E16.5 shown in (C).

Scale bars, 2 mm.

(C) UMAP visualization of the brain retrieved from the E9.5 and E12.5–E16.5 sections shown in Figure 3C. Bins are colored by stage (upper left) and the an-

notations (bottom). MZ, mantle zone; VZ, ventricular zone; Pall, pallium; SPall, subpallium; Die, diencephalon, Hy, hypothalamus; Mb, midbrain; SpC, spinal cord;

Hb, hindbrain; Cere, cerebellum; OB, olfactory bulb; ChP, choroid plexus; Noto, notochord; FMN, facial motor nucleus; Mes, mesenchyme.

(D) Bubble plot showing the expression levels of the specific markers in each of the brain regions shown in Figure S3C.

(E) Tangram inferred spatial distributions of different types of radial glia cells for an E9.5 section (E1S1). A reported single-cell mouse developing brain data (La

Manno et al., 2021) was used for the analysis. Scale bars, 500 mm.
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Figure S4. Modules of gene expression and gene regulatory networks in the developing embryos, related to Figure 3

(A and B) Heatmaps showing the genes with significant spatial autocorrelation grouped into different genemodules based on pairwise spatial correlations of E9.5

(left, E1S1) and E16.5 (right, E1S1) sections. Selected genes and GO terms related to representative gene modules are highlighted on the right side of each

heatmap.

(C and D) Spatial visualization of the example genemodules related to the indicated organs on E9.5 (left, E1S1) and E16.5 (right, E1S1) sections. Scale bars, 1mm

(left) and 2 mm (right).

(E) Spatial visualization of gene expression, coexpression, and ISH images for Shh and Kitl in an E9.5 section (E1S1, left), and Sox2 and Pantr1 in an E11.5 section

(E1S4, right). Scale bars, 500 mm.

(F) Heatmap showing the regulons with significant spatial autocorrelation grouped into different modules based on pairwise spatial correlations of an E9.5 section

(E1S1). Selected regulons and their corresponding GO terms related to representative regulon modules are highlighted on the right side.

(G) Spatial visualization of example regulon modules and their representative regulon for the indicated organs. Scale bars, 1 mm.
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Figure S5. Spatial heterogeneity of cell types and cell states in the E16.5 embryo, related to Figure 4

(A) Violin plot showing the number of detected UMI and genes per segmented cell in the E16.5 section (E1S3) shown in Figure 4A.

(B) Spatial visualization of the indicated cell types shown in Figure 4A. Scale bars, 1 mm.

(C) Heatmap showing the normalized expression of selected markers for the indicated cell types from E16.5 section (E1S3) shown in Figure 4A.

(D) Bubble plot showing the normalized expression of selected markers for the indicated subtypes of the epithelial cell clusters shown in Figure 4A.

(E) Spatial visualization of the expression of the indicated genes in the regions squared in Figure 4B. Scale bars, 100 mm.

(F) Bubble plot showing the normalized expression of selected markers for the indicated cell states of the chondrocyte clusters shown in Figure 4A.

(G) Spatial visualization of the expression of the indicated genes in the regions squared in Figure 4C. Scale bars, 100 mm.
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Figure S6. Spatial heterogeneity of cell types in the E16.5 brain, related to Figure 4

(A) Spatial visualization of cell types in the E16.5 brain. Cells are colored by the annotations. Fb RGC, forebrain radial glia cell; Fb NeuB, forebrain neuroblast; Fb

Glu NeuB, forebrain glutamatergic neuroblast; Fb GABA NeuB, forebrain GABAergic neuroblast; Fb GABA Neu, forebrain GABAergic neuron; CR, Cajal-Retzius

(legend continued on next page)
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cell; Corti Glu NeuB, cortical glutamatergic neuroblast; CortiHippo Glu Neu, cortical or hippocampal glutamatergic neuron; Corti prog, cortical intermediate pro-

genitor; Corti Glu Neu, cortical glutamatergic neuron; Olfa Neu, olfactory neuron; Hypo Neu, hypothalamus neuron; VH GABA Neu, ventromedial hypothalamus

GABAergic neuron; DieGlu Neu, diencephalon glutamatergic neuron;MbRGC,midbrain radial glia cell; MbGlu NeuB,midbrain glutamatergic neuroblast;MbGlu

Neu, midbrain glutamatergic neuron; DA Neu, dopaminergic neuron; Hb RGC, hindbrain radial glia cell; Hb NeuB, hindbrain neuroblast; Hb Glu NeuB, hindbrain

glutamatergic neuroblast; Hb Glu Neu, hindbrain glutamatergic neuron; Hb GlioB, hindbrain glioblast; DorsHb RGC, dorsal hindbrain radial glia cell; Motor Neu,

motor neuron; Cere Gran NeuB, cerebellar granule neuroblasts; Mixed Neu, mixed region neuron; Mixed GlioB, mixed region glioblast; Mixed GABA Neu, mixed

region GABAergic neuron; Cranium Fibro, cranium fibroblast; ChP, choroid plexus; Endo, endothelial cell; Fibro, fibroblast; Ery, erythrocyte. Scale bars, 500 mm.

(B) Tangram inferred spatial distributions of the indicated cell types at E16.5 brain (E1S3). A reported scRNA-seq of mouse developing brain data (LaManno et al.,

2021) was used for the integration analysis. Scale bars, 500 mm.

(C) Tangram inferred spatial distributions of the indicated cell types at E16.5 embryo brain (E1S3). A reported scRNA-seq of mouse developing cortex data (Di

Bella et al., 2021) was used for the integration analysis. Scale bars, 250 mm.

(D) Spatial visualization of the MGE module score. Genes used for MGE module score calculation are indicated on the right side. Scale bars, 250 mm.

(E) Violin plot showing the ratio of unspliced RNA versus total RNA in E16.5 GABAergic neurons/neuroblasts (E1S3).

(F) Left: spatial visualization of the expression of the indicated genes in the E16.5 telencephalon (E1S3). Scale bars, 250 mm. Right: ISH for the indicated genes of

the E15.5 embryo taken from ABA. Scale bars, 250 mm.

(G) Heatmap showing the activity of regulons for the indicated cell types from the E16.5 telencephalon shown in Figure 4D.

(H) Spatial visualization of the activity for the representative regulons at the E16.5 telencephalon (E1S3). Scale bars, 250 mm. (I) UMAP visualization of a reported

scATAC-seq data of the mouse developing cortex (Di Bella et al., 2021). Cells are colored by the annotations (left), or the motif deviation score for the indicated

transcription factor motifs (right).
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Figure S7. Spatial diversity of cell types in the developing dorsal midbrain, related to Figure 5

(A) Spatial visualization of cell types in the dorsal midbrain at the indicated regions of the E12.5 (E1S3), E14.5 (E1S3), and E16.5 (E1S3, E2S6, E2S7). Cells are

colored by the annotations. Endo, endothelial cell; Ery, erythrocyte; Fibro, fibroblast; GABA Neu, GABAergic neuron; GlioB, glioblast; Glu Neu, glutamatergic

neuron; Glu NeuB, glutamatergic neuroblast; Micro, microglia. NeuB, neuroblast; RGC, radial glia cell. Scale bars, 200 mm.

(B) Bubble plot showing the normalized expression of selected markers for the indicated cell types shown in Figure 5A.

(legend continued on next page)
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(C) Spatial visualization of progenitor cell types in the ventricular zone of the dorsal midbrain in sections from another embryo (E16.5 E2S6 and E2S7). Scale

bars, 200 mm.

(D) Spatial visualization of Aldh1l1, Npas3, andMki67 expression in the dorsal midbrain at the indicated time points (E12.5 E1S3, E14.5 E1S3, and E16.5 E1S3).

Scale bars, 500 mm.

(E) Spatial visualization of the pseudotime score of progenitor cells in the ventricular zone of the dorsal midbrain in sections from another embryo (E16.5 E2S6 and

E2S7). Scale bars, 200 mm.

(F) ISH images of the E15.5 embryo for the indicated genes taken from ABA. Scale bars, 500 mm. (G) Spatial visualization of the expression of the indicated genes

in the dorsal midbrain at the indicated time points (E12.5 E1S3, E14.5 E1S3, and E16.5 E1S3) and the corresponding ISH images of the E15.5 embryo taken from

ABA (H). Scale bars, 500 mm.

ll
OPEN ACCESS Resource


	Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays
	Introduction
	Results
	DNB-patterned arrays enable large field-of-view spatially resolved transcriptomics with high definition
	Spatially resolved transcriptomic atlas of mouse organogenesis
	Spatial heterogeneity of cell types in mouse embryonic tissues
	Spatial heterogeneity of progenitor cells in the developing dorsal midbrain
	Deciphering developmental disease susceptibility using MOSTA

	Discussion
	Limitations of the study

	Supplemental information
	Acknowledgments
	Author contributions
	Declaration of interests
	References
	STAR★Methods
	Key resources table
	Resource availability
	Lead contact
	Material availability
	Data and code availability

	Experimental model and subject details
	Animal

	Method details
	Stereo-seq chip preparation
	Generation of Stereo-seq chips
	Calling of CID

	Stereo-seq library preparation and sequencing
	Tissue processing
	In situ reverse transcription
	Amplification
	Library construction and sequencing

	In situ hybridization
	Preparation of probes and sections
	Hybridization
	Staining


	Quantification and statistical analysis
	Stereo-seq raw data processing
	Image-based single cell segmentation and diffusion analysis
	Cell segmentation with nucleic acid staining
	Diffusion analysis

	Stereo-seq benchmarking analysis and clustering
	Comparison of Stereo-seq with published methods
	Spatially constrained clustering (SCC)
	Unsupervised clustering of the segmented cells

	Spatially resolved gene regulatory networks
	Identification of spatially auto-correlated gene or regulon modules
	Cell type mapping
	Alignment of single-cell transcriptome with Stereo-seq by Tangram
	Reanalysis of scATAC-seq data
	Inference of developmental trajectories
	Embryo developmental trajectory analysis
	Spatial RNA velocity analysis
	Monocle 3 analysis

	Spatial gene enrichment analysis of genes associated with human developmental disorders




