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SUMMARY
Quantifying spatiotemporal dynamics during embryogenesis is crucial for understanding congenital dis-
eases.We developed Spateo (https://github.com/aristoteleo/spateo-release), a 3D spatiotemporal modeling
framework, and applied it to a 3Dmouse embryogenesis atlas at E9.5 and E11.5, capturing eight million cells.
Spateo enables scalable, partial, non-rigid alignment, multi-slice refinement, and mesh correction to create
molecular holograms of whole embryos. It introduces digitization methods to uncover multi-level biology
from subcellular to whole organ, identifying expression gradients along orthogonal axes of emergent 3D
structures, e.g., secondary organizers such as midbrain-hindbrain boundary (MHB). Spateo further jointly
models intercellular and intracellular interaction to dissect signaling landscapes in 3D structures, including
the zona limitans intrathalamica (ZLI). Lastly, Spateo introduces ‘‘morphometric vector fields’’ of cell migra-
tion and integrates spatial differential geometry to unveil molecular programs underlying asymmetrical mu-
rine heart organogenesis and others, bridging macroscopic changes with molecular dynamics. Thus, Spateo
enables the study of organ ecology at a molecular level in 3D space over time.
Cell 187, 1–23, December 26, 2024 Published by Elsevier Inc. 1
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INTRODUCTION

Knowledge of the precise spatial and temporal orchestration of

gene expression and cell-cell interaction (CCI) at whole-embryo

level duringmammalian organogenesis will significantly advance

developmental biology, and it holds enormous potential for hu-

man health.1 Single-cell RNA sequencing (scRNA-seq) has

enabled the creation of time-resolved cell atlases of

C. elegans,2,3 Drosophila,4,5 mouse,6,7 and human8,9 embryo-

genesis. However, scRNA-seq approaches dissociate embryos

into single cells, leading to a critical loss of spatial informa-

tion.10,11 The recent emergence of spatial transcriptomics (ST)

methods12–19 addressed this limitation, enabling spatiotemporal

profiling of embryogenesis, yet whole-embryo-scale spatiotem-

poral studies for mammalian species pose great challenges; pre-

viously, these studies have been limited to a single time point20 or

early time points21 or to a single organ,22 given the limited field of

view (FOV) of most ST platforms, but only until now for whole

mouse embryos at E9.5 and E11.5.23

Furthermore, while tremendous progress has been made in

computational analyses of ST with the development of methods

for 3D reconstruction,24 spatial domain digitization,25 and

CCI,26–30 various challenges prevent their use for embryo-scale

and 3D ST datasets. For example, existing methods for 3D align-

ment, such as probabilistic alignment of ST experiments

(PASTE),24 cannot align embryonic sections at large scale while

accounting for missing regions across tissue sections and tissue

deformation introduced during sample preparation. Additionally,

existing methods for spatial domain digitization25 are limited to

2D shapes but not to any 3D objects, and CCI models26–30 are

not designed to describe the many intercellular and intracellular

interactions operating at different scales in 3D biological struc-

tures. Last but not least, modeling 4D spatiotemporal dynamics

(e.g., morphogenesis) from time-resolved 3D ST data remains an

open challenge.

To address these unmet gaps, in this study, we developed a

unified framework, Spateo, which achieves 3D spatiotemporal

modeling of the molecular hologram of the whole mouse em-

bryos, leveraging a time-resolved wholemouse embryo cell atlas

with a total of more than eight million cells for two critical time

points (E9.5 and E11.5) of mouse organogenesis.23 Note that

the experimental protocol of the improved 3D ST profiling with

the automated serial block-face imaging (SBFI) approach

and the full characterization of this massive reference dataset

will be reported in a separate study.23 This study focuses on

investigating several emergent 3D structures1 that are character-

ized with rapid formation and maturation at this stage, including

the four-chamber heart, spinal cord, and secondary organizers

such as the zona limitans intrathalamica (ZLI) andmidbrain-hind-

brain boundary (MHB), which have specific gene expression

patterns and signaling landscapes that govern cell fate of sur-

rounding spatial regions.

Spateo features a coherent and unique set of 3D aware

analytical approaches. First, Spateo introduces a scalable

and powerful 3D reconstruction algorithm that is capable of

accurately reconstructing 3D whole mouse embryos by allow-

ing non-rigid, partial alignment; multi-slice refinement; and

mesh correction using Gaussian process, variational Bayesian
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inference, and others. On the new 3D whole mouse datasets

and several other 3D datasets, Spateo consistently outper-

forms PASTE,24 PASTE2,31 multi-omics single-cell optimal

transport (Moscot),32 spatial-linked alignment tool (SLAT),33

STAlign,34 and SPACEL35 in terms of accuracy, robustness,

and efficiency. Spateo also features a multi-scale spatial

domain analyses framework applicable to defining specific

spatial axes and study levels of biology ranging from single-

cell to embryo level, using a generalized digitization approach

by solving a potential function equation of spatial graph of sin-

gle cells. We applied this approach to characterize gene

expression variation across orthogonal axes of the ZLI and spi-

nal cord, which would not otherwise be possible with 2D ana-

lyses. We identified a repertoire of signaling and transcription

factors (TFs) such as Slit2 and Dbx1, many of which regulate

ZLI and spinal cord maturation. To probe the underlying cell-

cell communication and intracellular signaling, we further devel-

oped an integrative framework that allows for integrative

modeling of intercellular/intracellular interactions. We leveraged

this framework to uncover and characterize the unique molec-

ular networks underlying the organization of MHB and ZLI,

involving key ligands of the Wnt family, Bmp family, and Fgf8

and TFs such as Foxd1, Cited, and Id1, among others.

To connect macroscopic cellular morphogenesis with under-

lying microscopic molecular pathways, we further generalized

the 3D alignment framework to allow for learning of a morpho-

metric vector field that accurately predicts the 4D spatiotem-

poral migration path of cardiac cells from the 3D reconstructed

heart, the earliest organ to appear during embryogenesis. We

found that the asymmetrical migration of the heart may be

related to atrium- and ventricle-specific Notch signaling; differ-

entiation factors such as Tbx2, Id2, and Tbx20; or morphogen-

esis factors such as Angpt1, Pitx2, and Hey2. Going beyond

spatiotemporal modeling of a single organ of the heart tomultiple

organs jointly, we next revealed the morphometric convergence

of the Drosophila midgut and expansion of the hindgut and sali-

vary gland, which is further used to reveal putative morphoge-

netic factors responsible for germband retraction, such as otp,

Abd-B, and others. Lastly, to facilitate interactive exploration of

massive, complex 3D datasets, we also developed Spateo-

viewer, a versatile and powerful tool for 3D data visualization

and manipulation that is freely accessible at http://viewer.

spateo.aristoteleo.com/. Collectively, these integrative methods

allow for deep investigations of 3D structures such as the murine

secondary organizers in the brain (ZLI andMHB), the spinal cord,

four-chamber heart, and whole Drosophila germband at breadth

and resolution.

Spateo facilitates a shift in single-cell analysis—from the con-

ventional, reductionist cell-centric focus to embracing the tissue,

organ, and embryo as a whole—allowing for ultra-fine, multidi-

mensional spatial and temporal examination of molecular mech-

anisms. Spateo is generally applicable to any sequencing-based

or imaging-based ST readouts and can be used in conjunction

with Dynamo,36 a general framework for RNA velocity vector

field analyses, to enable quantitative and predictive analyses of

spatiotemporal kinetics of cell fate transitions. Extensive tuto-

rials, workflows, and documentation are provided at https://

spateo-release.readthedocs.io/en/latest/, and the open-source

http://viewer.spateo.aristoteleo.com/
http://viewer.spateo.aristoteleo.com/
https://spateo-release.readthedocs.io/en/latest/
https://spateo-release.readthedocs.io/en/latest/


Figure 1. Spateo, a versatile tool for 3D spatiotemporal transcriptomics modeling at single-cell resolution and whole-embryo scale,

demonstrated on the mouse and Drosophila embryos

(A) Three major functional modules of Spateo that enables 3D spatiotemporal transcriptomics modeling: data preprocessing (single-cell segmentation, basic 3D

data exploration); core functions with a set of novel 3D aware modeling approaches (3D alignment, reconstruction, digitization, cell-cell interaction,

(legend continued on next page)
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toolkit can be found at https://github.com/aristoteleo/spateo-

release, where community contributions are welcome.

RESULTS

Spateo: A versatile tool for multi-level spatiotemporal
modeling of 3D spatial transcriptomics
To embrace the arrival of the era of 3D ST, we developed a ver-

satile tool for advanced 3D spatiotemporal modeling at whole-

embryo scale with single-cell resolution. The Spateo tool chain

has three major functional modules: data preprocessing, core

functions, and Spateo-viewer (Figure 1A; Table S1). Spateo

starts with a flexible application programming interface (API)

that reads in different data formats from different 2D and 3D

ST technologies (Figures 1A and S1A), which can then be con-

verted into a single uniform data structure. The data preprocess-

ing module consists mainly of functionalities for single-cell seg-

mentation and basic 3D ST dataset exploration. Spateo’s main

core function module implements a comprehensive set of 3D

spatiotemporal modeling approaches, introduced below, and

these will be discussed in detail in subsequent sections. Lastly,

we developed Spateo-viewer, the ‘‘Google Earth’’-like web

browser (http://viewer.spateo.aristoteleo.com/) for ST that al-

lows for intuitive and interactive 3D data exploration and

analyses.

In this study, we leveraged a 3D whole mouse cell atlas from

E9.5 and E11.5 embryos23 (Figures S1 and S2; Table S2), with a

large number of sections and cells, an overall smaller embry-

onic section interval, and comparable RNA capture, compared

with existing datasets from earlier mouse embryonic stages21

or human gastrulating embryo20 (Figures S1A–S1C). Addition-

ally, we also leveraged another 3D Drosophila embryo dataset

to demonstrate the generality of this approach.37 To annotate

this massive 3D mouse ST dataset with a total of more than

8 million cells, we first co-embedded this dataset with a well-

annotated scRNA-seq atlas38 to a latent space,39 followed by

using a hierarchical approach to transfer the cell-type label

from the annotated scRNA-seq dataset to the Stereo-seq data-

set via a trained classifier.40 Across all cell types for both E9.5

and E11.5, we found that the Stereo-seq dataset has a high

correspondence of matched markers and similar cell-type frac-

tions with the scRNA-seq references from Qiu et al. (2024)41

(Figures S1D and S1E). Overall, we show that the spatial

distribution of specific cell types such as cardiomyocytes; he-

patocytes in E9.5 embryo dataset; intermediate neuronal pro-

genitors and ependymal cells in E11.5 dataset; and corre-
morphometric, backbone, and morphogenesis analyses); and Spatio-viewer, the

each approach.

(B and C) Spateo’s scalable, flexible, and powerful alignment (B) and 3D reconst

(D) Spateo allows for various basic 3D spatial data exploration.

(E and F) The schematic of 3D digitization (E) and cell-cell interaction (F) method

(G) Morphometric analysis quantifies the surface area, volume, height, length, w

(H) Backbone analyses that use a principal curve to define the backbone of a 3D

backbone, and clustering backbone into different spatial domains (see also Figu

(I) Morphometric vector learning and differential geometry analyses (see also Fig

(J) Spateo-viewer is an online or standalone browser that allows intuitive and int

(E)–(I) are designed for more advanced 3D downstream analyses.

See also Figures S1 and S2.
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sponding marker genes such as Myh6, Afp, Eomes, and

Spon1 are enriched in corresponding locations in the embryo

(Figure S1F).

To enable 3D ST modeling, a major hurdle is a powerful

approach to allow for accurate, scalable, and robust alignment

of 2D slices into 3D structure at a whole-embryo scale. In Spa-

teo, we developed a 3D alignment framework (Figure 1B, refer

to Figures 2 and 3) that allows for rigid, non-rigid, partial, pairwise

alignment; multi-slice refinement (aligning multiple slices jointly

all at once); and mesh correction (enhancing 3D reconstruction

with exterior reference shape mesh, such as the Allen Mouse

Brain common coordinate framework or CCF v342)—while hav-

ing high computational efficiency at the same time. Once the

3D slices are aligned, Spateo can generate a point cloud model

from which it can create a surface mesh model via marching

cube algorithm and voxel model by voxelization of the mesh.

Once the mesh and voxel models are created, virtual slices

from arbitrary angles can be generated (Figure 1C, refer to Fig-

ures 3 and 4). Next, a series of 3D aware modeling strategies

from Spateo can be used in downstream analysis (Figures 1D–

1I). For relatively straightforward 3D analyses, Spateo can, for

example, be used to identify 3D spatial domains, detect spatially

variable genes in 3D, and to interpolate gene expression in 3D

space via either an MLP-based or a Gaussian process-based

approach (Figure 1D, refer to Figure 6). Importantly, we devel-

oped a series of advanced 3D aware approaches in Spateo,

including 3D domain/surface digitization (Figure 1E, refer to Fig-

ures 4 and 5), CCIs (Figure 1F, refer to Figures 4 and 5), morpho-

metric and volumetric measurements (Figure 1G, refer to Fig-

ure 6), morphometric backbone (Figure 1H, refer to Figure 6),

morphogenesis predictions (Figure 1I, refer to Figure 6), and an

interactive 3D data browser with Spateo-viewer (Figure 1A, refer

to Figure 7). We will extensively describe each approach in the

following sections.

Taken together, Spateo establishes a versatile tool for multi-

scale spatiotemporal transcriptomics modeling, applicable to

whole Drosophila and, more importantly, mouse embryo-scale

datasets (Figures 2–7).

Efficient, non-rigid alignment, multi-slice refinement,
and mesh correction approaches to reconstruct 3D
molecular hologram of whole mouse embryo
The sequential slicing and subsequent ST profiling at the whole-

embryo level offer us a unique opportunity to reconstruct the mo-

lecular hologramof the entire 3D embryo structure. However, con-

ventional sectioning and downstream library preparation19–22 can
‘‘Google earth’’ of 3D spatial transcriptomics. Relevant sections are noted for

ruction (C) framework (see also Figures 2 and 3).

of Spateo (see also Figures 4 and 5).

idth, and cell density of a reconstructed 3D object (see also Figure 6).

object, followed by identifying genes that significantly vary as a function of the

re S8).

ure 6).

eractive exploration of 3D spatial transcriptomics (Figure 7).

https://github.com/aristoteleo/spateo-release
https://github.com/aristoteleo/spateo-release
http://viewer.spateo.aristoteleo.com/


Figure 2. Spateo enables accurate, efficient, and scalable reconstruction of 3D molecular holograms of whole mouse embryos

(A) The schematic of Spateo’s probabilistic model and the associated variational optimization process for aligning spatial transcriptomic slices to create 3D

whole-embryo models. For details of the 3D alignment model and optimization process, please refer to STAR Methods.

(B) Example mouse embryo slices at stages E9.5 and E11.523 after alignment using Spateo. Each point is a cell, colored by its region identity, with the region

identity or spatial domain annotations obtained from Cheng et al.23 The same as in (C) and (D).

(legend continued on next page)
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rotate, transform, deform, and introduce missing regions in each

profiled tissue section. While these issues are shown to be

largely alleviated by the automated SBFI approach,23 it is gener-

ally necessary to develop scalable and robust algorithms to

reconstruct 3D structures to recover the relative spatial locations

of single cells across different sliceswhile allowing for local distor-

tion within the same slice. Sophisticated methods such as

PASTE24 were recently developed to align spatial sections for

3D reconstruction. However, the unique featuresofwhole-embryo

datasets, such as the large number of sequential tissue sections

(up to �100 sections) and total cells (up to �8 million cells),

the missed regions, tissue deformation, and sectioning gap be-

tween consecutive slices, restrict the use of these approaches

as they build upon rather inflexible formulation of all-cell to all-

cell mapping across slices; rely on expensive optimal transport-

based approaches; and perform sequential alignment of consec-

utive slices, which accumulate errors as the number of slices

increases.

In Spateo, we introduced a powerful method that formulates

the 3D alignment problem with a generative Gaussian process

approach consisting of an initial pairwise alignment mode, fol-

lowed by a multi-slice refinement mode to reconstruct 3D struc-

tures, scalable to the whole-embryo datasets with �8 million

cells, while addressing aforementioned challenges (Figure 2A).

The generative process for pairwise alignment transforms the

coordinate system from one sample (slice A) to another (slice

B) (Figure 2Ai). We consider slice A as the model points that

can generate the data points slice B through spatial transforma-

tion T . We additionally include an outlier model to account for the

commonly occurring partial overlapping between slices. The

generative probabilities from model points to data points are

very flexible and are expressed by both gene expression similar-

ity and spatial proximity. Moreover, it can incorporate cell prolif-

eration/apoptosis scores as a priori, such that more proliferative

(apoptotic) cells will map to more cells with uniformly high (low)

probability, and cells with the same label (such as cell type)

and similar image features will be mapped across tissue sec-

tions. Furthermore, the generative model allows for both rigid

and non-rigid transformation: where the rigid transformation is

used to align the overall frame, while the non-rigid transformation

aligns the local distortions, modeled by a Gaussian process47

(Figure 2Aii). To reduce error accumulation during sequential

alignment, we also designed a multi-slice refinement model by

jointly considering multiple slices from the neighborhood of the

slice of interest, either from the left or right, to refine the align-

ment (Figure 2Aiii). The underlying stochastic variational optimi-

zation process used by Spateo relies on coordinate ascent vari-

ational inference (CAVI)48 to iteratively update the variational

parameters (including the transformation as well as the posterior

generative probabilities, etc.) until convergence, making the al-

gorithm reliable, extremely fast and memory-efficient, and scal-
(C) Visualization of 3D reconstruction results of mouse embryos at stages E9.5 (to

Spateo, respectively. The legend in the bottom is shared for both stages. Spateo b

Scale bars for E9.5 and E11.5 denote distances of 0.5 mm and 2 mm, respective

(D) The accurate 3D reconstruction by Spateo reveals intricate structures of eve

(E) Spatial 3D plot of the corresponding markers for each organ.

See also Figures S1 and S2.
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able to the whole mouse embryo dataset (Figure 2Aiv; Video S1;

STAR Methods).

We next applied Spateo to the mouse embryo data,23 recon-

structing 3D molecular holograms of the entire mouse embryo

at E9.5 and E11.5 (Figures 2B–2E). Specifically, we performed

multi-slice refinement of the 90 slices and 84 slices from E9.5

and E11.5 embryos (Figure 2B), respectively, guided by an initial

pairwise alignment across every two consecutive slices. Impor-

tantly, Spateo’s alignment framework resulted in a noticeable

improvement of the reconstructed 3D whole mouse embryo

structures, compared with OT-based approaches (Figure 2C),

revealing intricate 3D structures of every major organ as well

as the spatial distribution of their corresponding marker genes

within the whole embryo (Figures 2C–2E; Video S2, organs’ an-

notations are token from Qiu et al.23).

To qualitatively benchmark our 3D reconstruction ability, we

first show that Spateo can reveal more intricate and smoother

3D embryo/tissue structures than PASTE24 for human gastrulat-

ing embryo Stereo-seq data20 and sc3D,21 a 3D alignment

method requiring cell-label information, for both E8.5 and E9.0

mouse embryo Slide-seq data21 (Figures S3A and 3B). Next,

we quantitatively benchmarked Spateo over alternative state-

of-the-art algorithms (Figure 3), including PASTE,24 PASTE2,31

Moscot,32 SLAT,33 STAlign,34 and SPACEL35 on several 3D ST

datasets with a considerable number of consecutive sections

and cell numbers, i.e., mouse hemibrain MERFISH37 (Figure 3A,

129 slices with 9.3 million cells) dataset, human metastatic

lymph node OpenST38 (Figure 3B, 19 slices with 1 million cells)

dataset, macaque cortex Stereo-seq (Figure 3C, 119 slices

with 30 million cells) dataset,43 mouse forebrain hemisphere

BARSeq49 (Figure 3D, 40 slices with 1.2 million cells) dataset,

and mouse embryos Stereo-seq23 (Figure 3E, introduced above)

dataset. These extensive benchmarks validate Spateo’s leading

edge in terms of pairwise alignment, multi-slice refinement, and

mesh correction, either based on mean absolute error (MAE)

when compared with the ground-truth Allen CCF v3 reference

or on contextual label consistency score based on cell-type la-

bels (see STAR Methods for details). We next evaluated the per-

formance of Spateo as well as other methods on more intricate

alignment cases such as partial alignment or non-rigid align-

ment. We first implemented a data simulation strategy using

the STARMap Plus dataset (Figure S4Ai), where three different

simulations are considered, i.e., non-rigid distortion, ratio crop,

andmanually crop (Figure S4Aii–S4Aiv). We then used this simu-

lation strategy for three benchmarks: non-rigid, partial, and

multi-slice refinement benchmarks. On the non-rigid alignment

benchmark using the sagittal and well STARMap Plus datasets,

Spateo had significantly lower pairwise MAE, which is consis-

tently maintained under different distortion levels (Figure S4B,

first row). When zooming into specific regions, we observed

improved alignment across slides on intricate local structures
p row) and E11.5 (bottom row), using the OT-based method (i.e., PASTE) and

ut not OT-basedmethods accurately reconstruct 3Dmouse embryo structures.

ly.

ry major organ of the whole embryo.



(legend on next page)
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(Figure S4B, second and third rows). Next, on the partial align-

ment benchmark (Figure S4C), while SPACEL, PASTE2, and

STAlign tend to show apparent misalignment across slides, Spa-

teo overcame this to correctly align overlapping regions while

ignoring non-overlapping regions. Furthermore, Spateo consis-

tently outperformed other methods in partial alignment under

different overlapping ratios across sagittal and well datasets

(Figure S4C). Finally, we demonstrated that Spateo’s multi-slice

refinement strategy can continue to improve the 3D reconstruc-

tion accuracy when multiple slices are involved (Figure S4D).

After establishing the accuracy of our algorithm, we further

demonstrated that Spateo dramatically improves computational

efficiency and scalability, compared with alternative tools (Fig-

ure 3F). Spateo is also robust to different downsampling strate-

gies (Figure 3G), e.g., subsampling slices under different interval

gaps or subsampling cells number at different ratios. Lastly, we

validated the robustness of Spateo under a large range of values

for all major parameters (Figure S4E).

In conclusion, leveraging its scalability, generative modeling

framework that accounts for partial, non-rigid, multi-slice refine-

ment, and mesh correction, Spateo is able to accurately create

the 3D hologram of mouse embryos.

Amulti-scale, 3D-aware digitization and CCI framework
to dissect intercellular and intracellular mechanisms of
tissue organization
Thewhole 3D embryo (Figure 4A) dataset allows us to investigate

emergent structures that were previously difficult to probe in

their entirety, including the ZLI (Figure 5),50,51 MHB (Figure S6),

and spinal cord (Figure S6).52 To comprehensively characterize

3D transcriptomic heterogeneity, powerful algorithms that can

accommodate arbitrary 3D structures and enable detection of

spatially polar genes across multiple scales (ranging from the

subcellular level to the organ level) are critical. However, existing

methods such as Belayer25 are limited to 2D analyses and thus

cannot be easily generalized to analyze the hollow 3D neural

tube where the ZLI is located, the 3D ring of the ZLI itself, and

the serpentine 3D spinal cord. Spateo introduces a digitization
Figure 3. Spateo outperforms state-of-the-art 3D alignment approach

(A–C) Benchmarks demonstrated across a broad range of 3D spatial transcripto

human metastatic lymph node data,38 and (C) Stereo-seq macaque cortex.43 F

rithms on the left, while benchmark metrics are on the right. 95% confidence inte

result comparing Spateo with other two leading performing algorithms. STAlign-

CLC, contextual label consistency; see STAR Methods.

(D) Benchmarking themesh correction algorithm. Left: the 3D reconstruction resu

is smooth, it may not match the actual structure. Middle: after incorporating the m

Allen CCF v3.42 Right: the statistical results of mesh correction comparedwith oth

with multi-slice refinement; ‘‘-M’’, combined with mesh correction; global MAE, g

(E) On the Stereo-seq E9.5 and E11.5 mouse embryo datasets, the cumulative

Spateo’s 3D alignment is much more accurate.

(F) Efficiency and scalability benchmark on Stereo-seqmacaque cortex dataset. S

search for overlap ratio by their original implementation; see more details in STA

(G) Robustness benchmark on sampling interval (left) and sampling cells (middle

embryo data (top: E9.5 embryo; bottom: E11.5 embryo). The right three column

served, respectively. Middle: the columns from left to right present the recons

respectively. Right: line plots of Pearson correlation (blue, left y axis labels) and m

and downsampled data by Spateo. Solid line corresponds to E9.5 data and dash

bars for E9.5 and E11.5 denote distances of 1 mm and 3 mm, respectively.

See also Figure S4.
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method based on the concept of the graph potential function

(STAR Methods) that empowers us to create arbitrary axes in

any topologically complex 2D or 3D structure (Figure 4B, upper;

STAR Methods).

Meanwhile, to uncover the signaling and regulatory mecha-

nisms that result in gene expression variation, it is critical to

dissect ligand-receptor or L:R interactions involved in cell-cell

communications and associated downstream gene regulations.

However, existing tools for CCI analysis mostly consider only the

ligands and receptors that may be involved, without consider-

ation of potential effects.26–28 Those that do consider these ef-

fects frame the CCI events in terms of cell-type proximity instead

of in terms of signaling molecules, limiting interpretation of

possible molecular drivers,29,30 and return global estimates,45

despite heterogeneity from cell to cell that becomes more pro-

nounced especially in patterned 3D structures with a large num-

ber of cells and cell types. Spateo utilizes spatially weighted

modeling approaches to connect expression patterns to

possible mechanistic L:R interactions while accounting for po-

tential differences between tissue regions (Figure 4B, lower;

STAR Methods), returning predictions for each cell. It addition-

ally models the ligand-receptor and downstream gene expres-

sion as a function of TFs, thereby creating ‘‘TF-gene models,’’

to connect intercellular interaction with intracellular interactions

(Figures 4B–4D; STAR Methods).

Before we applied our digitization and CCI algorithms to the 3D

mouse embryo dataset,23 we first extensively validated them on

simulations and several public datasets. Spateo’s digitization

was able to create more uniform ‘‘layers’’ and ‘‘columns’’ in two

simulation cases (Figures 4E and 4F), representative of common

biological structures, for example, layers of the brain. It also nicely

digitized the inner-outer layer axis of the macaque cortex section

with a complex topology (Figure 4G). The continuous axes gener-

ated by this method enable multi-scale investigation of gene

expression polarity (Figures S5A–5D), revealing known rostral-

caudal (R-C) gradients of functional markers in the mouse brain,13

such asCntnap2, Epha7, andNr2f153 (Figures S5A and S5B), and

enabling subcellular polarity analysis: e.g., identifying genes
es

mics datasets, including (A) MERFISH mouse hemibrain data,37 (B) OpenST

or each panel, we have 3D visualization of each dataset from different algo-

rval is included for each bar, and p value shown on the right indicates the t test

GT, STAlign with pre-alignment; pairwise MAE, pairwise mean average error;

lts after performing Spateo multi-slice refinement. Although the tissue structure

esh correction, the original structure has been well recovered and aligned with

er methods onmouse hemibrain fromMERFISH and BAR-seq. ‘‘-G’’, combined

lobal mean average error; see STAR Methods.

distribution curves with respect to the CLC score are plotted indicating that

pateo-Smeans using sparse calculation; PASTE2*means using the brute force

R Methods.

). Left: the left column shows the reconstruction results of Spateo on the full

s exhibit Spateo’s reconstruction when only 1/2, 1/5, and 1/10 slices are pre-

truction results of Spateo when only 20%, 10%, and 5% cells are retained,

ean absolute error or MAE (red, right y axis labels) reconstructed on complete

ed line to E11.5 data. 95% confidence interval is included for each line. Scale



Figure 4. Amulti-scale, 3D-aware digitization and cell-cell interactionmodeling framework to dissectmolecular landscapes of the 3Dmouse

hologram

(A) 3D reconstructed E11.5 stage embryo, colored by cell type and with the outlined zona limitans intrathalamica (i), midbrain-hindbrain boundary (ii), and spinal

cord (iii) regions. Scale bars for the whole embryo, ZLI region, and spinal cord denote distances of 500 mm, 200 mm, and 1000 mm, respectively.

(B) Schematic of the digitization and cell-cell interaction (CCI) models (more details in STAR Methods).

(legend continued on next page)
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enriched either at the nucleus centroid or near the karyotheca in

the cytoplasm (Figures S5C and S5D).54 In a MERFISH mouse

brain dataset (Figure S5E),55 our digitization successfully recapit-

ulated cortical layers to model the laminar enrichment of neurons,

achieving higher accuracy than Belayer (Figures S5F–S5I). These

analyses demonstrated that Spateo’s digitization facilitates the

definition of arbitrary spatial axes across multiple scales, thereby

enabling the detailed spatial dissection of molecular and signaling

heterogeneity.

Our spatially weighted CCI models outperformed similar

methods in predicting target gene expression (see STARMethods

for benchmark details) on a non-small cell lung cancer (NSCLC)

sample profiled with CosMx,44 assessed by the Spearman or

Pearson correlation between the observed and model-predicted

gene expression (R2 consistently >0.8) (Figures 4H–4J). Further-

more, Spateo reported more consistent results, compared with

global models, for same-family ligand and receptors, using WNT

family interactions for analysis (Figures S5L and S5M). Consistent,

robust performance was observed across multiple FOVs within

the same dataset (Figure S5N) and also across a variety of data-

sets collected using different methods (Figures S5J–S5N and

S5O–S5R).

Taken together, Spateo delivers a general framework to reveal

gene expression polarity across multiple scales of biology from

cell to tissue to organ, and it explains this variation in terms of

the effects of region-specific intercellular and intracellular cell

signaling.

Systematic characterization of functional biological
circuits underlying central nervous systemdevelopment
During organogenesis, key 3D embryonic structures in the cen-

tral nervous system (CNS), such as the ZLI, MHB, and spinal

cord, characterized by their unique molecular diversity and

cellular interactions. Specifically, the ZLI organizer, a critical

brain organizing center, influences neighboring cells to adopt

specific developmental paths, shaping the thalamic (p2) and

pre-thalamic (p3) regions.56 Little is known about the molecular

patterns and intercellular interactions that manifest around orga-

nizers,57 but new 3D ST methods start to allow for comprehen-

sive analysis of the whole transcriptome, enabling the explora-

tion of molecular features of the ZLI. Recent 3D studies have

characterized the ZLI region from E8.5–E9.521; however,
(C) Downstream model that uses the expression of transcription factors (TFs), a

networks, and Spateo’s spatial-aware regression framework to predict gene ex

receptor pairs.

(D) Schematic describing how the downstream model (C) can be used to extend

intercellular (L:R) interactions and intracellular (TF-target) regulations.

(E) Layer (left) and column (right) digitization by Spateo (upper) and Belayer25 (low

(F) Same as in (E) but for the simulated trapezoid.

(G) Layer digitization by Spateo (left) and Belayer (right) on a Stereo-seq section

(H) Cell segmentation plot of all cells, colored by cell type, in field of view (FOV)

(I) Scatterplot comparing the number of ligand:receptor interactions across cells

processing stage. Each point is a cell; the x axis represents the number of nonzero

the Spateo array.

(J) Bar plot of Spearman correlations between observed and model-predicted

weighted ‘‘global’’ Poisson generalized linear model that uses the COMMOT L:R

for details.

See also Figure S5.
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comparatively little is known about the signaling landscape of

ZLI region at later stages. The creation of a comprehensive 3D

cell atlas of the E11.5 mouse embryo and the introduction of

3D digitization and CCI modeling techniques allow us to explore

the complex intercellular or intracellular biological circuits within

the ZLI and other tissues at breadth and depth.

To characterize the ZLI organizer, we first extracted two sub-

sets containing the ZLI, a ZLI flanking region, and the ‘‘dience-

phalic ring’’58 (Figure 5A; Tables S3 and S4). We then digitized

these regions to respectively define ‘‘dorsal-ventral’’ (D-V) and

‘‘rostral-caudal’’ axes (Figures 5B and 5C). Importantly, the ZLI

does not extend to the roof plate59; indeed, we found the expres-

sion of the ZLI marker Shh60 to be exclusive of that of Fgf8 in the

roof plate of the diencephalic ring (Figure 5B). From CCI

modeling, we additionally found an effect of Fgf8 on Sufu (Fig-

ure 5B, see ‘‘roof plate region’’) and Gli3 (not shown), which

together constitute a Shh-repressor complex61 and thus provide

a potential mechanism controlling the extent of dorsal extension

of the ZLI. Next, we investigated the ZLI flanking region (Fig-

ure 5C) to probe how the ZLI functions as the boundary and

signaling center of the p2 and p3 regions.We identified threema-

jor spatially variable genemodules along the R-C axis (Figure 5D;

STAR Methods), which we hypothesized correspond to the pre-

thalamus (p3), thalamus (p2), and ZLI. To characterize spatial

distribution of genes, wemapped them to the p2, p3, and ZLI do-

mains by visualizing their enrichments along the R-C axis (Fig-

ure 5E). We found several morphogens of the Wnt family to be

enriched in the p2 region, except forWnt7b that was instead en-

riched in the prethalamus (Figure 5E).

To reveal the intercellular signaling landscape involving Wnt

morphogens and other ligands, we fit CCI models to predict

cell-specific ligand effects (STAR Methods) on a panel of target

genes selected among those found to exhibit R-C variability.

We visualized the enrichment of predicted interaction effects

along the R-C axis as well (Figure 5E). Noticing the effect of

many Bmp-family factors on the stemness-promoting Id1 in

the p2 domain, we fit TF-gene models to infer TF regulators of

both the ligands and of the target genes downstream of those li-

gands’ cognate receptors to characterize the factors driving

stemness in the E11.5 P2 region. Among others, we predicted

Bmps to be regulated bySox2 and Id1 bySmad4, theBmp trans-

ducer62 (Figure 5F), demonstrating Spateo’s ability to map the
weighted neighbor graph constructed from gene expression, prior knowledge

pression as a function of the expression of corresponding regulating ligand-

insights derived from the ligand or L:R-based models (B, bottom) to infer both

er) on a simulated half circle.

of the macaque cortex.

4 from a non-small cell lung cancer (NSCLC) sample profiled with CosMx.44

predicted by COMMOT45 with those predicted by Spateo in the model pre-

L:R interactions from the COMMOT array, and the y axis represents that from

gene expression, comparing Spateo’s spatially weighted model with a non-

array to predict expression. See STAR Methods section COMMOT benchmark



Figure 5. Spateo identifies networks of intercellular signaling and intracellular regulations in the developing brain proximal to the zona

limitans intrathalamica
(A) Schematic of the upper neural tube at the E11.5 stage, with zona intrathalamica limitans (ZLI) (red) and midbrain-hindbrain boundary (MHB) (light blue)

indicated (left). The diencephalic ring (i) and ZLI flanking region (ii) analyzed are highlighted, with cells of the ZLI in maroon (middle). Different views (i-1 to i-3 and

ii-1 to ii-3) and relationships (indicated by the dashed encapsulated lines) between these two regions are shown on the right.

(B) Spatial scatterplots of the diencephalic ring from two angles, colored by dorsal-ventral digitization values (left), expression of Shh (middle), and expression of

Fgf8 (top right) or effects of Fgf8 on Sufu (bottom right). Scale bar denotes a distance of 200 mm.

(C) Spatial scatterplots of the ZLI flanking region, colored by rostral-caudal digitization values. Scale bar denotes a distance of 200 mm.

(D) Cluster map of genes that are highly variable along the R-C axis in the ZLI subset.

(E) (Left to right) Expression density plots for selected Wnt family ligands along the R-C axis, the expression of selected Lhx factors along the R-C axis, and the

magnitude of selected cell-cell interaction effects along the R-C axis. The ZLI region is highlighted by a light blue rectangle.

(F) Schematic of intercellular or intracellular interactions involving Bmp7, Sox2, and Id1, and Smad4.

(G) The signaling landscape of ZLI region. Left: identification of regions in the ZLI subset. Purple: p2 (thalamic), orange: ZLI, yellow: p3 (prethalamic), blue: roof

plate, and red: basal plate regions. Right: schematic showing cell-cell interaction effects (arrows) that connect ligands (triangles) to target genes (can be TFs:

squares, or others: circles). Green regions (around ephrins and Bmps/Wnts) indicate group ligands that similarly affect groups of genes. Genes are colored by

their region(s) of enrichment (with split colors if enriched in more than one region) and sized according to average expression. Black arrows indicate interactions

supported by other studies, while gray arrows newly predicted interactions. Corr., correlation; Digi, digitization values; Exp., expression.

See also Figure S6.
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intercellular/intracellular molecular signaling network of a spe-

cific spatial domain. Next, we characterized the precise localiza-

tion of signaling effects for additional ligands, including Gdf11,
ephrins, and Shh. We mapped each interaction effect to the

p2, ZLI, and p3 regions and to the basal plate and roof plate do-

mains along the D-V axis when applicable (D-V axis not shown)
Cell 187, 1–23, December 26, 2024 11
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Figure 6. Spateo characterizes morphometric and molecular dynamics involved in the asymmetrical heart organogenesis

(A) 3D reconstructed models of the whole heart and each major anatomical structure, namely, left ventricle (LV), right ventricle (RV), outflow tract (OFT), right

atrium (RA), and left atrium (LA) from E9.5 (top row) or E11.5 (bottom row).

(B) Bar plot of different 3Dmorphometric features of the whole heart (WH) or eachmajor structure between E9.5 (left bar for each group) and E11.5 (right bar). The

top two domains with the most dramatic changes of each morphometric feature are annotated.

(C) 3D cell alignment map and cell-type transition matrix between E9.5 and E11.5 hearts. The solid line with the arrow indicates the mapping from E9.5 to E11.5

cells, while the dash line with the arrow indicates the mapping from E11.5 back to E9.5. Gray lines between heart structures connect every E9.5 cell to the most

likely target cells at E11.5 heart. The transition matrix on the right indicates the transition probability from one cell type to another. Each row of the matrix sums

to be 1.

(D) 3D quiver plots represent the cell migration field. Cells are colored by the value of the z axis component of the migration velocity.

(E) 3D streamline plot of the cell migration paths, predicted from the migration vector field.

(F) A 2D bar chart on the polar axis illustrates the average migration directions (different octants, defined by left-right, upper-lower axis, and anterior and posterior

direction) and magnitude (length of the bar) of cells of the five major structures (indicated by the color) of the heart. From (D—F), we can see that both Gaussian

process or GP and SparseVFC gave similar results, while GP-based vector fields tend to be smoother.

(G) Differential geometry analysis of the morphometric vector field reveals the asymmetrical differentiation of the heart. From top to bottom: on the left, cell

migration streamline plots with streamlines colored with the migration acceleration, curl, and divergence; on the right, the boxplots of the corresponding dif-

ferential geometry quantities across five major structures.

(H) Circos plot of top significant genes (morphogenic genes) that are highly correlated with morphometric curl, acceleration, and divergence. The middle Venn

diagram reveals the gene set size and overlapping gene numbers related to morphogenic curl (white), acceleration (dark pink), and divergences (blue) categories.

The outside loop includes heatmaps of gene expression for all morphogenic genes, specific to each morphometric property (shown as a separate heatmap). The

rows of the heatmap are annotated with major heart structures, while the columns are annotated with gene names. Genes are ordered by q values, increasing in

clockwise fashion for eachmorphogenic category. The color of each box on the heatmap and the dots near the heatmap are used to indicate the gene expression

level and q value, respectively. Bold gene names are among the gene sets defined by the GO pathways shown in (I), while red-colored gene names are known

morphogenesis genes visualized in (J).

(legend continued on next page)
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(Figure 5G). Notably, we observed regulation of prethalamus/P3-

specific ligands (e.g., Sema5b, the Notch-like Dlk1, Dll2, and

Dll3) and TFs (e.g., Foxd1) byWnt7b, the aforementioned activity

of Fgf8 in the roof plate, and effects of Gdf11 on early neuronal

markers (e.g., Dcx and Thsd7a) in the basal plate (Figure 5G).

We also noted thalamus/P2-specific upregulation by Wnts of

the negative feedback regulators Axin2 and Nkd1. Furthermore,

we observed localized effects of the Wnt and Bmp ligands on

pluripotency maintenance genes, such as Id1, Tead1, Mycn,

Otx1, Cited2, and Ybx163–69 (Figure 5G). Many of these observa-

tions are further supported by past perturbational studies62,70–73

(Figure 5G). These results paint a comprehensive picture of the

intercellular and intracellular signaling landscape of the ZLI re-

gion, spanning several spatial domains (p2, ZLI, p3, roof plate,

and basal plate domains) at E11.5.

We further studied the molecular landscape of the MHB and

spinal cord in 3D. In the MHB region, we characterized the region

specificityof select ligandsand target genes, suchas theFgf-fam-

ily factors in the boundary neuroectoderm (Figures S6A and S6B;

TableS5).Weadditionally investigated effects of developmentally

critical ligandsPtn74andCdh274,75onavarietyofdownstream tar-

gets (Figures S6C and S6D).We identified effects of Ptn on genes

involved in synaptic plasticity (e.g., Gap43), axon growth (e.g.,

Rtn1), and others (FigureS6C).We also revealed region-exclusive

effects of Cdh2 on Tox and Abcc4 (Figure S6D). These predicted

effects are consistent with previous reports,76,77 further validating

Spateo’s ability in identifying biologically meaningful effects. For

the spinal cord region, we first integrated cross-sections along

themedial-lateral axis into themiddle plane, and thenwedigitized

this integratedspinal cord representation toobtain aD-Vaxis (Fig-

ure S6F; Table S6). We observed members of the Lhx family (Fig-

ure S6G) and other TFs (e.g., Dbx1, Gbx2) (Figures S6H and S6I),

all important for spinal development,78–80 to be differentially

distributed along the D-V axis. We additionally found Slit2 to be

spatially enriched at the dorsal end (Figure S6J). As LIM domain

factors (such as the Lhx family) help to control Slit2 expression

in the cranium,81 we investigated whether the Lhx factors might

similarly affect Slit2 in the spinal cord. From TF-gene modeling,

many Lhx genes and other homeobox factors were among the

top predicted regulators for Slit2 (Figure S6K). We identified po-

tential downstream targets of Slit2 signaling, revealing potential

targets involved in adhesion and cytoskeletal dynamics, consis-

tent with its role in axon guidance82,83 (Figure S6L). In all, these re-

sultsdemonstrateapplicationsof3Ddigitization to identify region-

specific gene expression patterns and of CCI modeling to predict

the subtle interplay between transcriptional regulation andCCIs in

the MHB region and spinal cord at E11.5.

Morphometric vector field predicts cardiac migration
paths and characterizesmolecular pathways underlying
the asymmetrical organogenesis of cardiac chambers
The formation of an embryo and constituent organs is char-

acterized by a tightly controlled morphogenetic process.
(I) Bar plot of the combined GSEA score46 for key terms associated with heart m

(J) 3D scatterplot of the interpolated gene expression of example genes (highligh

region for each category is annotated. A transparent surface mesh is used to rev

See also Figures S7, S8, and S9.
Live imaging provides the opportunity to observe morpho-

genesis over time at high resolution,84 but it cannot associate

complex regulatory programs to such morphometric changes

because imaging can only measure a few genes within single

cells over time. With our multi-time-point molecular holo-

grams, we can not only compare reconstructed 3D organs

over time to reveal distinct modes of cell migration, but we

can also predict how each individual cell migrates over

time and can ultimately connect macroscopic morphological

changes with microscopic molecular expression dynamics in

single cells across space.

The heart, one of the first organs to appear during mammalian

embryogenesis, is a highly structured organ that is formed

through a complex migration process, including heart tube loop-

ing, septation, and valve formation.1 To characterize the cell

migration pattern of heart organogenesis and reveal the underly-

ing morphogenetic factors, we first reconstructed 3D models of

the heart at E9.5 and E11.5 based on 74 and 64 slices, respec-

tively (Figures 6A and S7A–S7D; Table S7). We also demonstrate

that all major structures, namely, left/right ventricle (LV, RV), left/

right atrium (LA, RA), and outflow tract (OFT) from both time

points can be reconstructed (Figure 6A). We observed high

specificity of region-specific genes in each structure for both

time points. For example (Figures S7B and S7C), Cited1,85–87

Cck,86 Tnc,87 Angpt1,88 and Tbx589 are enriched in the LV, RV,

OFT, RA, and LA regions at E9.5 and Hand1,85 Hey2,90

Sema3c,91 Hcn4,92 and Pitx293 are enriched in the correspond-

ing regions at E11.5. Our 3D reconstruction further reveals a sig-

nificant increase in surface area, volume, and cell number, while

the cell density remains relatively constant and structural similar-

ity is high, consistent with previous studies94 (Figure 6B).

We applied the Gaussian process approach used for 3D align-

ment of thewhole embryo tomap cells of the E9.5 heart to those of

the E11.5 heart (Figure 6C, left). Major structures (LV, RV, etc.) of

E9.5 mapped to the corresponding E11.5 structures with high

specificity (Figure 6C, right). Importantly, the Gaussian process

can directly return an analytical morphometric vector field of sin-

gle-cell migration as well, constituting a uniform approach

capable of both performing 3D alignment and learning morpho-

metric vector fields. We define such vector fields as ‘‘morpho-

metric vector fields’’ that map cells from an earlier time point to

a later time point, revealing cellular migration patterns in physical

space (Figures 6D–6F; Video S3) in a manner analogous to our

previous RNA velocity vector field approach that instead reveals

cell fate transition in gene expression space.36 To reveal potential

underlying regulatory mechanisms of morphogenesis, we lever-

aged the accompanying transcriptomic data and differential ge-

ometry quantities that can be analytically derived from the recon-

structed morphometric vector field to reveal cellular migration

properties in physical space (STAR Methods). Importantly, for

3D morphometric vector fields, 3D curl (measures the degree of

rotation at a given point), acceleration, curvature, torsion (quan-

tifies the degree of twisting of a 3D object), divergence (reveals
orphogenesis based on GO enrichment analyses of all morphogenic genes.

ted in H) on cells of the reconstructed E9.5 3D heart. The highest expression

eal the 3D shape of the reconstructed heart.
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whether the tissue is expanding or shrinking), and Jacobian (Fig-

ure S7E) (quantifies howmigration along one axis influencemove-

ment along the other) have real physical meanings, and crucial

morphogenetic genes can be identified by finding genes with sig-

nificant correlationswith thesemorphometric properties. Interest-

ingly, from our differential geometry analysis, we revealed the

asymmetrical migration pattern of the heart (Figures 6G and

S7E). We showed, for example, that the RA has the highest accel-

eration, the RV and LA have the largest curl, while LV has the

lowest divergence, consistent with the timeline of the formation

of these structures (Figure 6G): compared with the LV that origi-

nated from the first heart field, LA/RA and RV originating from

the second heart field are integrated into the heart at a late stage.1

Furthermore, their possible progenitors and less mature states

contribute to their quick expansion/morphogenesis, related to

the high acceleration and curl at this time point (Figure 6G). The

LV is much more mature and has a limited differentiation

ability that makes it hard to contribute to other structures, charac-

terized by its lowest divergence.95 We next detected a set of

‘‘morphogenic genes’’ that are highly correlated with morpho-

metric curl, acceleration, and divergence, including known

cell migration markers,96,97 such as Tbx2/Bmp2; key genes

important for atrioventricular canal (AVC) development95,98,99;

Tdgf1 for anterior heart tube development100; Angpt1 for right

atrial chambers’ morphogenesis88; Pitx2 for the L/R asymmetric

formation101; and Hey2 for the ventricular formation90

(Figures 6H–6J). Gene set enrichment analyses (GSEAs)46 of this

set of ‘‘morphogenic genes’’ further revealed key terms associ-

ated with heart morphogenesis, for example, muscle cell migra-

tion, cardiac atriummorphogenesis, and cardiac RV morphogen-

esis (Figure 6I).

Collectively, these analyses reveal that Spateo characterizes

molecular pathways involved in asymmetrical heart organogen-

esis by predicting the morphogenesis paths of cell migration,

thus connecting macroscopic morphological dynamics with

microscopic expression dynamics.

Quantifying volumetric dynamics, expression polarity
and predicting morphogenesis factors during
Drosophila germ band retraction
Embryogenesis is characterized by specific ‘‘organogenesis

modes,’’ dynamic patterns of organ morphogenesis orches-

trated by sequential gene regulatory programs. These gene pro-

grams also dictate hierarchical cell fate specification and organi-

zation into complex 3D units of structure and function.102 In

addition to mice, Drosophila is an excellent model system to
Figure 7. Spateo-viewer, a versatile spatial transcriptomics data ex

scriptomics data exploration, slice alignment, 3D model reconstructio

(A) Two access modes of Spateo-viewer and required user data objects. Spat

aristoteleo.com/ or used locally as a standalone App. The input to Spateo-vie

used for storing spatial transcriptomics datasets where the.obsm slot contains sp

and the.obs contains cell annotation information. AnnData objects can be then co

Spateo or Spateo-viewer’s Reconstructor (see below).

(B) The schematic of Spateo-viewer’s GUI interfaces. Shown on the left are deve

(C) Typical workflow and the Reconstructor or Explorer of the Spateo web applic

(D) Spateo’s Explorer allows various data exploration modes for both 2D and 3D

approximation and projection for dimension reduction.

See also Figure S10.
investigate the kinetics underlying organogenesis modes and

to explore the relationship between morphogenesis and gene

expression given its fast life cycle and dramatic but highly orga-

nized morphological and gene expression changes during

embryogenesis. Specifically, from S11 and S13 stages of the

Drosophila embryo, we found that although the overall embry-

onic structures across these two time points are rather similar

(0.93) (Figures S8A and S8B; Videos S4 and S5), we were able

to identify three general major organogenesis modes: (1) organ

migration or movement, e.g., CNS, amnioserosa, and muscle;

(2) organ fusion/convergence, by which multiple pieces fuse

into a mature organ, e.g., midgut; and (3) organ expansion, pri-

marily driven by cell growth, e.g., hindgut and salivary gland

(Figure S8B).

We next characterized the gene expression polarity in the

whole Drosophila embryo, starting with quantifying the back-

bone of the germband by learning a principal curve that passes

through the middle of cells in the germband along the anterior-

posterior (A-P) axis103 (Figure S8C). We then identified genes

that are dynamically changing along this principal backbone us-

ing regression analyses, identifying head-specific genes such as

Dfd; thorax-specific genes such as Scr and Antp; and abdomen-

specific genes such asUbx, Adb-A, and Adb-B104 (Figures S8D–

S8F; Table S8). These Hox gene expression patterns are further

confirmed after interpolating the original noisy data, revealing a

consistent expression pattern with the Berkeley Drosophila

Genome Project (BDGP) in situ database105 (Figure S8G).

In contrast to the analytical morphometric vector field ana-

lyses of only the single heart organ in Figure 6 and VideoS6,

we modeled main organs within the germband, consisting of

CNS, hindgut, midgut, muscle and salivary gland jointly, consid-

ering the fact that developing organs of the germband influence

one another and are constrained by extrinsic physical and

biomechanical factors (Figure S8H). The analytical vector field

revealed high curl (Figure S8I) and acceleration (Figure S8J)

values at the tail of the germband, indicative of a strong contrac-

tion at this region (Table S9). To further quantify the genes and

gene programs that may drive the morphogenesis for these or-

gans, we plotted average acceleration and curl values of all the

cells with non-zero gene expression for individual genes corre-

sponding to a backbone index as a function of backbone indices

(Figure S8K). Interestingly, known morphogenesis genes, such

as peb/hnt,106 cad,107 Abd-B,108 etc., were identified to have

the highest mean backbone values and thus be enriched at the

tail of the germ band (Figure S8K). We also detected a repertoire

of less characterized genes, such asCG2930 andCG31463. The
ploration web application that allows interactive 3D spatial tran-

n, morphometric traits, and morphogenesis analysis

eo-viewer is deployed online and can be accessed at https://viewer.spateo.

wer (http://viewer.spateo.aristoteleo.com/) is an AnnData object, commonly

atial, UMAP, or other coordinates; the.X slot contains gene expression values;

nverted into VTK objects to generate the.points and.point_data slots either by

loper toolkits that enable Spateo-viewer’s functionalities.

ation.

spatial transcriptomics datasets. PC, point clouds; UMAP, uniform manifold
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importance of these detected genes during morphogenesis was

also reflected by Gene Ontology (GO) analysis,46 which further

reveals the enrichment in pathways associated with the germ-

band extension, embryonic hindgut morphogenesis, and others

(Figure S8L). Lastly, we showed that although there is little spatial

co-localization between muscle cells and neural cells, midgut

and hindgut cells strongly co-colocalize with muscle cells, sug-

gesting a critical role of the muscle cells in the rapid migration

of both the hindgut and midgut cells at this stage (Figure S8M).

Interestingly, we also found that the expression of Neo, Fkh,109

and COX8 is strongly correlated with the curl magnitude,

confirming their roles in modulating the cell migration of hind-

gut/midgut, which is critical for the germband retraction and re-

modeling (Figure S8N). Furthermore, when we focus on the CNS

(Video S7) andmidgut (Video S8), we also demonstrate that Spa-

teo infers cell migration paths and identifies morphogenesis reg-

ulators of each individual region (Figure S9).

Collectively, these results, in combination with the previous

section, highlight how Spateo can go beyond descriptive spatial

analyses to more dynamical and predictive 3D spatiotemporal

modeling with morphometric vector fields, significantly

advancing our ability to leverage 3D ST to reveal regulatory

mechanisms underlying emergent properties.

Spateo-viewer, the ‘‘Google Earth’’ of 3D spatial
transcriptomics
The size and complexity of emerging 3D spatiotemporally

resolved ST datasets pose a huge challenge on how to best

explore such datasets. A user-friendly web application analo-

gous to ‘‘Google Earth’’ is necessary to allow smooth, interactive

access to 3D single-cell data. We thus developed the Spateo-

viewer (http://viewer.spateo.aristoteleo.com/) to enable interac-

tive visualizations of 3D gene expression patterns, intuitive

browsing of tissue architecture and 3D organ models, and ani-

mation of organ morphogenesis patterns.

Spateo-viewer is a versatile tool for interactive slice alignment,

3D data and model reconstruction, exploration, visualization,

and downstream volumetric and morphometric analyses,

leveraging powerful 3D libraries from computer vision (CV) and

our Spateo and Dynamo packages (Figures 7A and 7B). To con-

nect with tools from the CV ecosystem, Spateo or Spateo-viewer

will first convert the h5ad data format used by the single-cell ge-

nomics field to vtk files used by visualization toolkit (VTK),110 Py-

Vista,111 Vuetify, and trame. Specifically, the spatial information,

uniform manifold approximation and projection (UMAP) or other

coordinate information (from.obsm), the expression of genes of

interests (from.X or.layers), and cell annotation information (fro-

m.obs) will be converted into.points and.point_data (Figure 7A).

Once the data conversion is complete, the lightweight vtk files

can then be conveniently visualized andmanipulated in the inter-

active data browser (Figure 7B).

Spateo-viewer features a highly modularized architecture and

streamlined workflow (Figures 7C and 7D). In particular, Spateo-

viewer comprises two major applications: the Reconstructor

module enables slices alignment and 3D reconstruction (Fig-

ure 7C), while the Explorer module facilitates 3D data exploration

and volumetric andmorphometric analyses (Figure 7D). A typical

Spateo-viewer workflow starts with data preprocessing. The
16 Cell 187, 1–23, December 26, 2024
Reconstructor, once provided with preprocessed data, can be

used to first align slices to reconstruct the 3D point cloud, which

can then be used to create surface meshes, followed by domain

cleanup and mesh reconstruction for each individual tissue/or-

gan. The cleaned data can be exported as anndata objects to

interact with other tools, including Spateo and Dynamo, followed

by further analysis in the Explorer. The Explorer allows data

exploration and 3D volumetric analysis (e.g., estimations of

length/width/height/surface area, cell density, and cell-type dis-

tribution) for each organ. If data frommultiple time points are pro-

vided, 4Dmorphogenesis analysis can be applied to understand

themolecular mechanisms driving the spatiotemporal kinetics of

different organs. The data exploration in the Explorer can oper-

ate either in the 2D space or 3D space to visualize not only the

intricate spatial distribution of different spatial domains, cell

types, or specific organs but also the gene expression in either

the 2D or 3D physical or reduced expression space.

To sum up, Spateo-viewer presents an interactive, intuitive,

and lightweighted online application to allow 3D data manipula-

tion and visualization of the emerging 3D ST. It is also highly

modularized and extendable, making it a flexible tool to allow re-

searchers to include new analysis modules (Figure S10). As the

3D ST continue to expand, we believe it will become an indis-

pensable tool for the field.

DISCUSSION

We are now at the dawn of a new era of spatial biology, with sub-

cellular resolution, large FOV methods such as Stereo-seq theo-

retically enabling construction of time-resolved embryo-scale

datasets in 3D space. To fully study these datasets, a scalable

analytical framework that explicitly models gene expression

and signaling dynamics in 3D space over time is critical. Here,

we present Spateo, a 3D aware foundational framework for

advanced spatiotemporal modeling, consisting of four integral

phases: it (1) reconstructs 3D embryo and organ models from

sequential 2D serial sections with a scalable and accurate algo-

rithm that allows for partial, non-rigid, multi-slice refinement and

mesh correction; (2) builds a multi-scale spatial domain digitiza-

tion framework to study levels of biology ranging from single-cell

level to embryo level; (3) dissects L:R interactions and predicts

interaction-associated downstream effects on gene expression

of several 3D structures including ZLI, MHB organizers, and spi-

nal cord at single-cell resolution with a spatially aware regression

model; and (4) learns morphometric vector fields that describe

cellular migration patterns and facilitate identification of regula-

torymechanisms underlying cell movement andmorphogenesis.

These innovative 3D aware spatiotemporal modeling ap-

proaches fueled a series of discoveries otherwise proven to

be challenging. In the first stage, Spateo’s 3D alignment

approach, built on Gaussian process and variational inference,

enabled us to more accurately and robustly reconstruct the

molecular holograms of whole mouse embryos in 3D space

across multiple time points, compared with existing state-of-

the-art approaches. Importantly, Spateo can be extended to

other modalities, e.g., H&E staining images and the use of

off-the-shelf image feature extractors and descriptors, such

as scale-invariant feature transform or SIFT112 and DIScrete

http://viewer.spateo.aristoteleo.com/
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Keypoints or DISK,113 to extract feature points (see Spateo’s

online tutorials). Furthermore, it can conveniently integrate

with other approaches, e.g., Spateo can further improve the

initial alignment from alternative tools by multi-slice refinement

and mesh correction. In the second stage, our multi-scale digi-

tization framework revealed not only nucleus- and cytoplasm-

enriched genes in subcellular resolution but also spatial polarity

genes that define the 3D signaling organization of the second-

ary organizers such as the ZLI and MHB and spinal cord. To

investigate the CCIs and transcription regulation underlying

the spatial heterogeneity of the gene expression, in stage three,

we further developed an integrative framework to uncover and

characterize the unique molecular networks that span both

intercellular and intracellular interactions, painting an intricate

signaling landscape of the ZLI region. Lastly, in the fourth

stage, Spateo learned morphometric vector fields that

accurately predict the 4D spatiotemporal migration path of

asymmetric murine heart organogenesis and the Drosophila

germband retraction, connecting macroscopic cellular morpho-

genesis with underlying microscopic molecular pathways. We

anticipate that future in-depth molecular and genetic studies

will be able to validate these extensive predictions to advance

our understanding of embryogenesis and disease.

As spatial technologies continue to mature and percolate

through biological laboratories, we foresee an explosion of

diverse optimization and application of ST and further develop-

ment of Spateo. Many single-cell genomics approaches can

be translated to spatial genomics approaches, including sin-

gle-cell multi-omics; RNA metabolic labeling; Perturb-seq and

lineage tracing to enable multi-view; and spatiotemporally

resolved, lineage-resolved, and perturbation-resolved cell-state

dynamics in situ and in 3D space. We additionally foresee oppor-

tunities to apply Spateo to understand biological systems in

many circumstances, e.g., by generating spatially resolved

cross-species cell atlases and comparing 3D models of organs

between different species to understand the evolutionary emer-

gence of tissue structures, such as the evolution of the four-

chamber heart in mammals from the single-chamber heart in

invertebrates.102 By further optimizing the 3Dmorphometric vec-

tor field approach, we expect many unique opportunities to

directly link regulatory and functional genes with morphological

changes at organ and embryo levels.

Spateo complies with best practice in software engineering,

which includes a modularized and extendable infrastructure that

allows continuous optimization; future integration with other

frameworks from theAristotleGitHuborganization, a foundational

software ecosystem for predictive genomics (https://github.com/

aristoteleo), currently including Dynamo36 and Dynast (https://

github.com/aristoteleo/dynast-release); and active community

contribution to draw from expertise across the field to build a uni-

form software ecosystem that enables dynamic, quantitative, and

predictive analyses of single cells and ST.

Limitations of the study
First, while the cost of sequencing has dramatically decreased

over the past two decades, that of emergent ST still prevents

large-scale 3D ST. The rapid development of cost-effective

open-sourced technologies, such as seq-scope,114 openST,38,114
novaST,115 etc., and commercial platforms like singular geno-

mics’ G4X, characterized by its large FOVs, will hopefully democ-

ratize this technology in the near future, further broadening the

impact and applicability of Spateo. Second, although we show

that our spatial-aware regression model enables dissection of

the intercellular and intracellular interactions at 3D space, models

that account for nonlinear gene regulation, such as graph neural

networks, may be developed to reveal complicated nonlinear

and higher-order L:R interactions and combinatorial gene regula-

tions in a spatially resolved manner. Third, while our current

morphometric vector field approach does not explicitly model

gene expression dynamics or RNA velocity, they could be unified

into a single learning task to learn reaction-diffusion like spatio-

temporal models.

RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be

directed to and will be fulfilled by the lead contact, Xiaojie Qiu (xiaojie@

stanford.edu).

Materials availability

This study did not generate new unique reagents.

Data and code availability

The raw data of the E9.5 and E11.5 whole mouse embryo 3D spatial transcrip-

tomics dataset can be found from Cheng et.al.23 The processed data can be

downloaded via this web page: http://spateodata.aristoteleo.com/. The S11

and S13 Drosophila whole-embryo datasets are released as part of the Spateo

package, downloadable via spateo.sample_data.drosophila(). The following

public datasets are used in this study: STARMap Plus dataset of the mouse

central nervous system,116 BAR-seq dataset of the mouse forebrain hemi-

sphere,49 Slide-seq dataset from E8.5 and E9.0 mouse embryos,21

MERFISH dataset of the adult mouse hemibrain,37 OpenST dataset of the hu-

manmetastatic lymph node,38 Stereo-seq dataset of the macaque cortex,38,43

MERFISH dataset of a cortex sample,55 Visium dataset of a mouse brain

sagittal section,13 MERFISH U2-OS cell line dataset,117 Stereo-seq dataset

of developing Drosophila,118 and NanoString small cell lung cancer dataset.44

Spateo (version: 1.1.0) is implemented as a Python package and is available

through GitHub (https://github.com/aristoteleo/spateo-release). Notebooks,

tutorials for reproducing all figures in this study, and tutorials of Spateo usage

cases are also available through GitHub (https://github.com/aristoteleo/

Spateo-notebooks, https://github.com/aristoteleo/Spateo-tutorials). Spateo-

viewer is also implemented as a Python package and is available through

GitHub (https://github.com/aristoteleo/spateo-viewer). Spateo-viewer can

be run as a standalone tool; see details here: https://github.com/aristoteleo/

spateo-viewer?tab=readme-ov-file. Spateo-viewer is also deployed as an on-

line App and can be accessed at http://viewer.spateo.aristoteleo.com/. Tuto-

rials on Spateo-viewer are available at: https://github.com/aristoteleo/spateo-

viewer/blob/main/usage/spateo-viewer.pdf.
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

We focus on computational modeling in this study. Detailed experimental information for 3D mouse embryo profiling and Drosophila

embryo profiling can be found in Cheng et al.23 and Wang.118

METHOD DETAILS

The 3D spatial transcriptomics Stereo-seq dataset of whole embryons at E9.5 and E11.5
Detailed experimental procedures for embryonic sectioning, Serial Block-Face Imaging (SBFI), and sequencing can be found in

Cheng et al.23

Alignment of spatial transcriptomics profilings of serial sections to create 3D models at whole embryo level
Most existing spatial transcriptomics methods offer 2D spatially resolved transcriptomes but tissues, organs and embryos are 3D

entities with unique spatial organizations and functionalities. Leveraging the ultra-high field of view of Stereo-seq or others, we

can perform continuous slicing of the same tissue, organ or embryos (such as Drosophila119 or even whole mouse embryos19). How-

ever, after the slicing and sequencing, the relative coordinates of the cells across sections are lost. In Spateo, we introduce a prob-

abilistic model for aligning spatial transcriptomic slices to create aligned 3D point clouds at the whole-embryo scale, enabling the

construction of 3D models and performing various downstream volumetric and morphometric analyses.

Problem definition of ST alignment

Consider two spatially-resolved transcriptomics samples, such as two consecutive tissue sections from the same embryo or two

well-aligned 3D embryos from two different developmental stages (applicable to all the following discussion), SI = fXI;ZIg, where

I˛ fA;Bgdenotes samplesA andB respectively,XI ˛RNI3D denotes theD-dimensional spatial coordinates ofNI spots (or cells, appli-

cable to all the following discussion) in sample IwhereD can be either 2 or 3, andZI ˛RNI3G corresponds toG features, e.g., genes, of

the measured readout at those spots. Our goal is to align the two samples such that corresponding spots between samples have

similar readout while the spatial distributions of spots are also preserved across samples. In this section, we assume that sample

B is the reference and that sample A will be aligned to the coordinate system of sample B by a transformation T . In what follows,

we present a Bayesian generative model for aligning ST data that is robust, efficient, and capable of performing flexible partial align-

ment, non-rigid deformations. This model can additionally be used to jointly align multiple sections all at once via a multi-slice refine-

ment mode to alleviate error accumulation of sequential alignment of many slices, e.g., about 90 slices for our whole 3d embryonic

dataset.

Generative process

In Spateo, we suppose the spots in model or source sample A are model points and spots in reference or target sample B are data

points, and sample B is generated from the transformed sample A, i.e., T ðSAÞ = fT ðXAÞ;ZAg. Note that the reverse order of gener-

ation works too (although may resulted in different mappings as the hypothesized generation process is directional) and can be

achieved by swap sample A and sample B. Considering the partial overlapping or outliers resulting from missing tissue regions be-

tween samples or scattered spots due to technical issues during tissue sectioning or library preparation that ST experiments may

encounter, we assume the following i.i.d. generative process:

For a spot in sampleB, sBn ˛SB is selected to be generated as an outlier with probability 1 � g or as an inlier generated from sample

A with the probability g. Next we describe the generation of outliers and inliers respectively.
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Outlier generation.We suppose sBn is generated from an outlier distribution poðxBn ;zBn Þ. As the pattern of outliers is highly diverse and
is independent of the sampleA, it is difficult to describe themwith a specific distribution. A general and reasonable assumption is that

they follow a uniform distribution 1=a, where the output space is a bounded region that covers the spatial coordinates XB and a is a

constant denoting the volume of the region.

Inlier generation. Assume spot sBn can be generated by a set of spots from the transformed sample A, we select an index m˛
f1;2;/;NAg among all possible spots from sample A, indicating sBn is generated by sAm, with a weighted probability am, wherePNA

m = 1am = 1. Then, for spatial coordinates generation, we suppose the position of xBn follows a Gaussian centered on T ðxAmÞ
with an isotropic variance s2, i.e., xBn � N ðxBn jT ðxAmÞ;s2IDÞ; for transcriptomic readout generation, we define a generalized form of

zBn � pðzBn
��zAmÞ, which can be described by many distributions, such as Gaussian and negative binomial; for modeling other available

information generation processes such as images, labels, and other modalities, e.g., chromatin accessibility or proteomics, we can

similarly augment a likelihood to other features. By repeating the above steps NB-times, we can generate sample B from sample A.

With the generative process defined above, the likelihood is a combination of a two-component mixture distribution (inlier-outlier

selection) and NA-component mixture distribution (generation spot selection). For clarity, we first introduce some notations. Assume

C = fc1; c2;/; cNB
g˛ f0; 1gNB is the vector of indicator variables, where cn = 1 indicates sBn is an inlier and comes from inlier distri-

bution, otherwise, an outlier. E = fe1; e2;/; eNB
g˛ f1;2;/;NAgNB is the vector of indicating index variables, where en = m means

that sBn is generated by sAm. The joint distribution of ðxBn ; zBn ; cn; enÞ given ðXA;ZA; s2;a;gÞ is as follows:

p
�
xB
n ; z

B
n ; cn; en

��XA;ZA; T ;s2;a;g
�
=
�ð1 � gÞpo

�
xB
n ; z

B
n

� �ð1� cnÞ
(
g
YNA

m = 1

�
amN

�
xB
n jT
�
xA
m

�
; s2ID

�
,pz

�
zBn
��zAm� �dmðenÞ

)cn
where d ðe Þ is an indicator function, with a value of 1 if e = m
m n n and 0 otherwise.

Transformation Model

The transformation model T ðxÞ from the above equation provides a spatial constraint that acts as a regularization. We decompose

the transformationmodel into rigid and non-rigid transformations as T ðxÞ = RðxÞ+ fðxÞ, whereR and f denote the rigid and non-rigid

transformations, respectively.

Rigid transformation can roughly align the general coordinate system, which is a simple combination of rotation with translation:

RðxÞ = xRu + t, where R˛SOðDÞ denotes a rotation matrix and t is a translation vector where SO stands for the special orthog-

onal group.

Non-rigid transformation can align localized distortions that may arise from tissue deformation during tissue sectioning and li-

brary preparation procedure. We use a Gaussian process model to represent this nonlinear transformation: fðxÞ = GPðm;kÞ, where

m : RD/RD is a mean function and k : RD3RD/RD is a semi-positive definite covariance function (also known as a kernel function).

In Spateo, the default kernel is squared exponential (SE) kernel with the form kðx;x0Þ = exp ð� bkx � x0k2Þ.
Prior Distributions

Prior distributions describe beliefs about the model variables before the inference. As described above, we place a GP prior over the

latent function to describe non-rigid transformation:

p
�
f
��XA
��N

�
fjm�XA

�
;KNN

�
; f = f

�
xA
�

where KNN is the covariance function evaluated between all the po
ints. Since we don’t know the overall offset in advance, we simply

set the the mean function to mðXAÞ = 0. Note that it does not reduce the generalizability as long as the coordinate is correctly trans-

formed or normalized.

The variable g from the above joint distribution controls the probability of occurrence of the outlier and inlier models. We define its

prior as a Beta distribution:

pðgÞ = BetaðgjBa;BbÞ
where Ba and Bb are hyperparameters that control the shape of
 the Beta distribution.

The variable a from the above joint distribution defines the probability that eachmodel spot will generate the target spot. We define

its prior as a Dirichlet distribution:

pðaÞ = Dir
�
ajk1NA

�
;

where k> 0 is a hyperparameter that controls the shape of the Di
richlet distribution and 1NA
is the vector of all 1 of size NA.

For other parameters ðXA;ZA;R;s2Þ, we introduce noninformative priors and treat them under the flat likelihood assumption.

Full joint Distribution

By incorporating the prior distribution into the likelihood distribution, we obtain the full joint distribution as follows:

p
�
SA;SB; q

�
fp
�
f
��XA
�
pðgÞpðaÞ

YNB

n = 1

p
�
xB
n ; z

B
n ; cn; en

��XA;ZA; f;s2;a;g
�
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where q = ðf;R;C;E; s2;a;gÞ is the set of latent variables.
Variational Bayesian Inference
In the previous section, we assumed a generative process between the two samples, however, what we are really interested in is how

to get a reasonable estimate of the posterior distribution of the hidden variables q in the generative process. These posterior distri-

butions may help biologists gain insights into biological processes in a data-driven manner, e.g., pðen
��SA;SBÞ describes from which

cell/spot in SA the sBn ˛SB is most likely generated; pðf��SA;SBÞ and pðRjSA;SBÞ indicate the non-rigid and rigid transformations of SB

mapped to SA, respectively; pða��SA;SBÞmay reveal the probability of proliferation and apoptosis of the cells in SA, etc. To this end,

we develop a variational Bayesian algorithm to estimate these posterior distributions.

Inference

One approach to solving the problem of getting estimates of the posterior distribution is to compute a reasonable estimate of q, such

as the expectation of q over pðqjDÞ, or the maximum mode of pðqjDÞ, where D = ðSA;SBÞ is the observed data. However, the exact

estimation is computational intractable and approximation is needed. Thus we introduce a variational posterior qðqÞ to directly

approximate the posterior pðqjDÞ such that the Kullback-Leibler (KL) divergence between pðqjDÞ and qðqÞ is minimized.48 The mini-

mization is known to be able to equivalently expressed asmaximization of the lower bound for the true log marginal likelihood (ELBO)

as follows48:

LðqÞ =
Z

qðqÞlog
	
pðq;DÞ
qðqÞ



dq:

Mean-field factorization

If there is no constraint imposed on qðqÞ, then the above optimization problem is still intractable since the optimal solution of this

optimization problem is bqðqÞ = pðqjDÞ, which is the exact posterior. Thus, we use themean field approximation to factorize the dis-

tribution qðqÞ into three independent groups as follows:

qðqÞ = q1ðf;g;aÞq2ðC;EÞq3

�
s2;R

�
In addition, we assume q3ðs2;RÞ = dðs2;RÞ for simplification, where dðs2;RÞ denotes a Dirac delta function, i.e., q3 is the distri-

bution with a point mass at s2 andR. In the following, for brevity of notation, we use q1, q2, and q3 to denote q1ðf;g;aÞ, q2ðC;EÞ, and
q3ðs2;RÞ respectively.
With the assumed independent factorization, maximizing ELBO can then be achieved by optimizing each of the factors indepen-

dently. For qi, the maximization has the form:

bqi = arg max
qi

Z
qi log

	
exp

�
Ejsi½log pðq;DÞ��

qi



dqi;
where
Ejsi½log pðq;DÞ� =

Z
log pðq;DÞ

Y
jsi

qjdqj
denotes the expectation over q for jsi. Note that above
j equation is the negative KL divergence between qj and

exp
�
Ejsi½log pðq;DÞ �� and thus the optimal qi is obtained:

log bqi = Ejsi½log pðq;DÞ�+ const:

Sparse Inducing Variable Approximation

Typically, inference involvingGaussianprocessmodelpossessesOðN3Þcomputational complexitywhereN is thedataset size.However,

with the increasing scale of current ST technology, reaching 3D whole embryo level, such as Stereo-seq, where a single slice contains

hundreds of thousands of spots and embryos reconstructed fromdozens of those slices containmillions of number of spots, it is difficult

touseGPmodel directlyon large-scaledatawithout downsampling. To this end, inSpateo,we introduce inducingvariables todrastically

reduce the computational complexity of the GPmodel toOðNm2Þ, wherem is the number of inducing variables. To be specific, we intro-

ducem pseudo-inputsXm lying in the coordinate space ofXA, and their inducing variables u, where u is similar to f having the sameGP

prior that pðuÞ � N ð0;KmmÞ. Our goal is to use the inducing variables u to approximate the qðfÞ. For convenience, the locations of the

inducing points, i.e.,Xm, arem points randomly selected from theXA. Following,120 we suppose u is a sufficient statistic for f, i.e., for any

value u, pðzjf;uÞ = pðzjuÞ holds. After incorporating inducing variables, the mean-field factorization of the first term becomes

q1ðf;u;g;aÞ = pðfjuÞq1ðu;g;aÞ;
where pðfjuÞ � N ðf��UG� 1u;G �UG� 1UuÞ = N ðfjm;GfjuÞ according to the formula of the conditional Gaussian, U = Knm is the

cross-kernel matrix evaluating the kernel function between the inducing points Xm and model points position XA, G = Kmm, and

G = Knn are the kernel matrix between all inducing points and model points position respectively.
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Maximize Lower Bound

Updating q1 involves non-rigid deformation, i.e., finding the optimal posterior GP given the q2, and q3. In addition, the generation

probabilities of the outliers and each model point are also updated.

Suppose q2ðC;EÞ and q3ðs2;RÞ are given and denote pmn = E½cndmðenÞ� and bN =
PNA

m = 1

PNB

n = 1pmn, the bound becomes

L =

Z
q1q2q3 log

Z
pðfjuÞ pðuÞpðgÞpðaÞP�XB;ZB;C;E

��XB;ZB; f;s2;a;g
�

pðfjuÞ q1ðu;g;aÞq2q3

dq1dq2dq3

=

Z
q1 log pðuÞdq1 +

Z
q1 log pðgÞdq1 +

Z
q1 log pðaÞdq1 �

Z
q1 log q1dq

+ logð1� gÞ
XNB

n = 1

ð1� cnÞ+ log g
XNB

n = 1

cn +
XNB

n = 1

XNA

m = 1

pmn log am

+
XNB

n = 1

XNA

m = 1

pmn logN
�
xB
n

��xA
mR

u + t+ fðmÞ; s
2
�
:

We find that L can be factorized into a sum of terms containing only ðf;uÞ, g, and a respectively. Therefore, we can further decom-

pose q1 into the marginal of each factor

q1ðf;u;g;aÞ = pðfjuÞfðuÞq1ðgÞq1ðaÞ. Focusing on the terms involving u, g, and a separately, without detailed derivation, we can

infer that the optimal posterior distribution of bfðuÞ, bp1ðgÞ, and bp1ðaÞ obeys a Gaussian distribution, Beta distribution, and Dirichlet

distribution, respectively. More specifically, we have bfðuÞ � N ðujmu;AuÞbq1ðgÞ = Betaðgj bN +Ba;NB � bN +BbÞbq1ðaÞ = Dir
�
a
��k1NA

+K
�

where
mu = s� 2GSUu
�
PXB � dðKÞRA

�
A = GSG

S =
�
G+s� 2UudðKÞRA

�� 1

RA = XARu + t
K = P1NB
˛ℝNA31, dð ,Þ denotes diagð ,Þ. Note that we can recov
er qðfÞ from qðf;uÞ = pðfjuÞfðuÞ bymarginalizing out u, which gives

the optimal bqðfÞ � N ðfjmf;AfÞ, where mf = UG� 1
mf and Af = Gfju +USUu.

With bq1ðfÞ, bq1ðgÞ, and bq1ðaÞ, we are able to compute
�
N

X
mn

�
= exp

�
E

log N

�
xBn
��rAm + fm; s

2
� � �

, CgD = exp ðE½log g�Þ, C1 � gD =

exp ðE½log ð1 � gÞ�Þ, and CamD = exp ðE½log am�Þ according to the property of their distributions. We present them without detailed

derivation as follows:

CgD = expfjðBa + bNÞ � jðBa +Bb +NBÞ g
C1 � gD = expfjðBb +N � bNÞ � jðBa +Bb +NBÞ g

CamD = expfjðk+KmÞ � jðkNA + bNÞ g�
N

X
mn

�
= N

�
xB
n

��rAm + fAm;s
2
�
exp

	
� 1

2s2
Afmm




where Afmm is them-th element of the diagonal of the matrix Af a
nd jðÞ is the digamma function which is defined as the logarithmic

derivative of the gamma function.

Updating q2 involves solving for the optimal posterior generative probability, i.e., the probabilistic relationship of matching points

between slices SA and SB. Suppose q1 and q3 are given, we obtain

log bq2ðC;EÞ =
XNB

n = 1

(
ð1 � cnÞlog

	
C1 � gD

a



+ cn logCgD +

XNA

m = 1

cndmðenÞ
�
logCamD + logCNX

mnD + log pz

�
zBn
��zAm��

)

We see that bq2ðC;EÞ is factorized into bq2ðC;EÞ =
YNB

n = 1

bqðnÞ
2 ðcn;enÞ. Then, taking the exponential of log bqðnÞ

2 ðcn; enÞ, we have

bqðnÞ
2 ðcn; enÞf

	
C1 � gD

a


ð1� cnÞ YNA

m = 1

�
CgDCamDCN

X
mnDpz

�
zBn
��zAm� �cndmðenÞ
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The normalization constant of bqðnÞ
2 ðcn; enÞ is obtained by the summation of the right-hand side of the above equation for all pairs of

cn ˛ f0;1g and en ˛ f1; 2;/;NAg as follows:

C1 � gD

,
a+ CgD

XNA

m = 1

CamDCN
X
mnDpz

�
zBn
��zAm�:

Thus, we obtain the closed-form expression of bqðnÞ
2 ðcn;enÞ:

bqðnÞ
2 ðcn; enÞ =

�
1 � K0

n

�1� cn

 YNA

m = 1

pdmðenÞ
mn

!cn

;

where
pmn =
CgDCamDCN

X

mnDpz

�
zBn
��zAm�

C1 � gD

�
a+CgD

PNA

m = 1

CamDCN
X
mnDpz

�
zBn
��zAm� ;

K0 = Pu1NA
˛RNB31. We see that bqðnÞ

2 ðcn; enÞ is a combination of a Bernoulli distribution and a categorical distribution, and we

obtain:

EðcndmðenÞÞ = pmn;

EðcnÞ =
XNA

m = 1

pmn = K0
n:

Updating q3 this term involves the estimation of rigid transformation and noise. Suppose q1 and q2 are given. Since q3ðs2;RÞ is a
Dirac delta function, which is characterized only by its mode. Therefore, we directly maximize the lower bound without using the gen-

eral solution of variational Bayesian inference. Taking the expectation of the logarithm of the full joint distribution over q1, q2 and q3,

the lower bound of the model evidence can be obtained as follows:

L � � 1

2s2

Z
N ðfjmf;AfÞ

�
f � dðKÞ� 1

�
PXB � dðKÞRA

� �u
dðKÞ

 
f � dðKÞ� 1

�
PXB � dðKÞRA

�! � 1

2
log s2

XNB

n = 1

XNA

m = 1

pmn

Taking the derivative of s2 and equating it to zero, we obtain a closed-form expression:

bs2 =
1bN R N ðfjmf;AfÞ

�
f � dðKÞ� 1

�
PXB � dðKÞRA

� �u
dðKÞ

	
f � dðKÞ� 1

�
PXB � dðKÞRA

�

=

1bN
��

mf � dðKÞ� 1
�
PXB � dðKÞRA

� �u
dðKÞ

�
mf � dðKÞ� 1

�
PXB � dðKÞRA

��
+TrðdðKÞAf Þ



Focus on R, we have

L �
XNB

n = 1

XNA

m = 1

pmn

�
xB
n � xA

mR
u � t � fm

�u�
xB
n � xA

mR
u � t � fm

�
Taking partial derivative with respect to t and equate it to zero, we obtain

t =
1bN �K0

XB � Kf � KXARu
�
= mXB � mf � mXARu
where m B = 1K0XB, mf = 1 Kf, m A = 1 KXA. Substituting t bac
X bN bN X bN k, we obtain

L�
XNB

n = 1

XNA

m = 1

pmn

�
xB
n � xA

mR
u � fm

�u�
xB
n � xA

mR
u � fm

�
= � 1

s2
Tr
��
fudðKÞ � XBuPu

�
XARu

�

where xB = xB � m B , xA = xA � m A , fm = fm � m . Afterwar
n n X m m X f ds, we obtain the optimal rotation matrix R using SVD method:

R = UCVu;
where USSV = svdðAÞ, C = diagð1;/; 1;detðUVuÞ Þ, and A =
 ðfudðKÞ � XBuPuÞXA:

Stochastic Variational Inference
Although Spateo introduces inducing variables to reduce the computational cost drastically, it is still not easy to scale to embryo-

scale data. This is because we still need to traverse the entire data for each coordinate update. To this end, in Spateo, we further
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utilized stochastic variational inference (SVI)121 to perform coordinate ascent, which is very similar to SGD that conducts stochastic

optimization using noisy yet computationally inexpensive gradient estimates. As performing SVI requires global variables, we use u,

g, and a to fill this role.With SVI, the time complexity of Spateo further reduced toOðbNAÞwith batch size b, making Spateo linear with

respect to the number of points.

Guiding Optimization
We find that the above alignment is somehow sensitive to initialization, especially for the partial overlapping cases, as the search

space is large and the optimization problem is highly non-convex. To address this limitation, we introduce a guiding optimization

strategy that initializes a coarse alignment and subsequently optimizes it to be more robust.

Initialize with Putative Correspondences

We use K-nearest neighbor algorithm for the gene expression feature to initialize the putative correspondences on the basis of sim-

ilarity between gene expression profiles of spots/cells between slices. As gene expression feature is often noisy, theK can be set to a

high value, e.g., 5. Also to avoid many-to-one correspondence, we calculate the mutual nearest neighbors for the spots between two

slices.

Rigid Transformation from Noisy Putative Set

Now suppose we have obtained the putative set P = fci = ðxCi ; yCi ÞgNi = 1 using the K-nearest search, where xCi and yCi are the spatial

coordinates in two slices respectively, which includes many outliers. Our goal is to find a coarse rigid transformation RC and tC from

the noisy putative set. We formulate this problem in a Bayesian framework:

pðciÞ = ð1 � gÞ 1

ð2ps2ÞD=2
e
�

kyC
i

� xC
i
RCu � tCk2

2s2 +g
1

a

where g, s2,D, and a have the samemeaning in the section ‘‘generative process.’’ Then the EM algorithm can be used to derive the

optimal MLE solution, which is similar in Dynamo or SparseVFC. E-step:

pc
i =

e
�
kyCi � xC

i R
Cu � tCk2

2s2

e
�
kyCi � xC

i R
Cu � tCk2

2s2 +
g
�
ð2ps2ÞD=2

�
ð1 � gÞa

M-step minimizing the expectation of the complete negative log-likelihood function as

XN
i

pc
i

kyCi � xC
i R

Cu � tCk2
2s2

+
D

2
log s2

XN
i

pc
i ;

Thus we can update RC and tC by the SVD method. First solve the optimal translation:

tC =
PCu

�
YC � XCRCu

�
PCu1

= mYC � mXCRCu
And solve the rotation matrix:
RC = UCVu � �

where USSV = svdðAÞ, C = diagð1;.;1;detðUVuÞ Þ, and A =
 YCudiag PC XC.

In the end, we update s2:

s2 =

PN
i

pc
i kyCi � xC

i R
Cu � tCk2

DPCu1

After convergence, we get the posterior PC and RC, tC as well, which can be utilized for guide optimization.

Guide Optimization

After the above step, we obtain a consensus set using the results of PC as I = fijpc
i > 0:5;pc

i ˛PCg. The consensus set can guide the

following alignment step. When we optimize the rigid transformation, we can use the consensus set as a regularization term:

min
R;t

1

2s2

XNB

n = 1

XNA

m = 1

pmnkxA
mR

u + t+ fm � xB
nk2 + l

X
i˛I

pc
i kxC

i R
u + t � yCi k2
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where l is a regularization parameter that controls the degree of regularization. We note that as s2 becomes small, the regularization

term actually becomes smaller, this makes the guidance weaker. We also note that the regularization term does not affect the non-

rigid transformation. Next, we derive the new solutions for the rigid transformation R and t in update of q3 from section Maximize

Lower Bound, where we update the formulation of t and A:

bt = �1uPXB � 1uPuf � 1uPuXARu
�
+2ls2

�
PCuYC � PCuXCRu

�
bN+2ls2PCu1
A =

XAuP1t+XAudiagðP1Þf � XAuPXB+2ls2

�
XCuPCt � XCudiag

�
PC
�
YC
� �u

The above sections introduce the mathematical foundation of the pairwise alignment. In the Spateo package, the pairwise align-

ment of consecutive slices can be achieved by simply calling the following function:
Joint modeling multiple slices
The pairwise align in Spateo described above is robust, efficient, and accurate, capable of reconstructing embryos containing mil-

lions of spots in a few minutes, in a sequential-run fashion, i.e., S1)S2/)SL. However, the sequential strategy often suffers from

the risk of error propagation. If an error occurs in some two-slice alignment, this error will propagate through the entire embryo. More-

over, a global offset may arise if the number of slices is large, due to error accumulation. To this end, Spateo jointly models multiple

slices, rather than limiting to pairs of slices, and performs multi-slice refinement to eliminate the error propagation problem. By

considering multiple slices, Spateo is able to usemore information and thus better handle cases where some part of a slice is missing

due to experimental imperfections, as other slices containing this region can provide complementary information.

Consider a set of spatially-resolved transcriptomics samples with order G = fS1;/;SLg where S i = fXi;Zig and the index i is

stored in order. Our goal now becomes to recover a series of transformations T = fT 1;/;T Lg, such that for all i, T iðS iÞ should align

neighboring T jðS jÞ in spatial and phenotypic readout. We assume that a slice is generated from the neighboring slices and consider

the neighboring slices to be model points and this selected slice to be data points. The inlier generative process is slightly different

from that of pairwise alignment. In inlier generation, we add an extra step of selecting the generation slice: we select an index k˛
N isi, indicating sin is generated from slice Sk , with a probability ui

k , where N i is the neighborhood of slice i and
P

k˛N isi

ui
k = 1.

In addition to the inlier generation, technically themulti-slice refinement is very similar to the pairwise refinement, so we don’t provide

a detailed derivation.

In the Spateo package, we can perform the multi-slice refinement by the following function:
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Mesh Correction
Motivation and background

Spateo’s pairwise-multi alignment scheme is able to reconstruct a 3D embryo that is coherent and smooth in terms of geometry and

gene expression across the 3D space. However, it should be noted that the reconstructed result is sometimes slightly incompatible

with the actual structure. In fact, it is due to the so-called ‘‘Banana problem’’ or ‘‘Z-shift problem’’, namely a 3D curved object cannot

be exactly reconstructed from cross-sections without any additional information.122 Fundamentally, this is because we implicitly as-

sume the alignment across slices is perpendicular to slices and it thus doesn’t allow alignment to form a curved structure. Note that

the problem is more significant when the slices are farther apart, or when the slices exhibit a non-centered structure, e.g., a curved

banana or half-brain. This problem can be solved by inserting fiducial markers that are obtained by sticking a straight probe in the

embryo before slicing. These fiducial markers can be tracked across each slice, thus allowing recovery of the original geometry struc-

ture of the embryo. However, this experimental method also introduces errors if the probe and the cutting plane of the slice are not

orthogonal. Furthermore, probe holes may sometimes collapse, making them difficult to trace, and the holes may also destroy part of

the tissue of interest in the slice. In Spateo, we design an algorithm to accurately recover the true anatomy structure by incorporating

additional shape geometry information without destroying the full embryo.

Problem formulation

Given a set of spatial transcriptomic slices G = fS1;/;SLg aligned by the above generative probabilistic model with their corre-

sponding heights z = ½z1; z2;/; zL�u, recorded during the experiment, and separately a morphological 3D mesh of the entire tis-

sue/organ/embryoM produced with imaging or other means, we wish to eliminate the z-shift error of each slice caused by the align-

ment by integrating themorphological information of themesh. To utilize this information, the first step is to align themeshM and the

slices set G, i.e., find a similarity transformation T , that transforms themeshM into the coordinate space of G to best align the slices G,

which can be formulated as bT = arg min T SðT ðMÞ;G; z Þ;
where T ðMÞ transforms the morphological shapeM by the transformation T , and S is a loss function that measures the similarity

between the transformed morphological shape T ðMÞ and the slices set G with z heights. After the alignment, it is much easier to

calculate the z-shift error for each slice and thus perform z-shift correction, where a series of z-shift translations (translation on

the same z-plane) t = ft1; t2;/; tLg are estimated for each slice.

Method

Finding Optimal Transformation as Discrete Labeling Problem. Our goal is to find the optimal similarity transformation, which can be

partitioned into seven parameters: q =
�
rx; ry; rz; tx; ty; tz; s

�
, where the first three parameters ðrx; ry; rzÞ are the rotation angles along

the X-Y-Z axes, the next two parameters ðtx; tyÞ are the translation in the X-Y plane, the next parameter tz is the translation in the Z

direction, and the last parameter s is the scaling factor. We wish the z-shifts of slices will not affect the estimation of the optimal

transformation, and therefore the loss function S should be designed to be translation invariant, which will be introduced in detail

later. In such a case, it is meaningless to optimize the X-Y translation parameters ðtx; tyÞ. We set the ðtx; tyÞ to the mean value of

all points on slices, i.e.,

�
tx; ty

�
=

1

L

XL
i = 1

1

jS ij
X
x˛S i

x

Therefore, the number of parameters to be optimized is reduced to five: q =
�
rx; ry ; rz; tz; s

�
, reducing the search space.

q = ðrx; ry ; rz; tz;sÞ
Next, we formulate the problem of finding the optimal q as a discrete labeling problem using pairwise Markov Random Field

(MRF),123 which discretes the continuous parameters space and evaluates the pairwise energy or loss, and then determines the

optimal parameters combination. A benefit of such a strategy is that it is less likely to be trapped in the optimization. Specifically,

a fully connected graph of parameters G = <V;E > is first constructed, where each node vi ˛V associates a parameter in q, resulting

in jVj= 5 nodes. Since G is fully connected, the edge set E = fðvi;vjÞg,cisj. As a discrete labeling problem, each node vi is assigned

a discrete label li from the label space L. In our problem, the label space L is defined as the set of all possible values of each param-

eter in q. We will discuss the discrete strategy for each parameter in detail later.

Typically, a discrete labeling problem on a pairwise MRF is associated with a unary potential function uiðliÞ and a binary potential

function bijðli; ljÞ, that minimizing the following energy function:

EðL;U;BÞ =
X
i˛V

uiðliÞ+
X
ði;jÞ˛ E

bijðli; ljÞ;
where L = fl1;/; lng is the label vector of all nodes, U = fuið ,
Þg is the unary potential function associated to vi ˛V, and B =

fbijð,; ,Þg is the binary potential function associated to edge ðvi;vjÞ˛E. The unary potential function uiðliÞ measures the cost of as-

signing label li to node vi, and the binary potential function bijðli; ljÞmeasures the cost of assigning label li to node vi and label lj to node

vj simultaneously. Note that these potential functions return scalar values, and the lower the value, the better the label assignment.
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The optimal label assignment L� is the one that minimizes the energy function, i.e., L� = arg minL EðL;U;BÞ.
Discrete strategy of the labeling space directly affects the accuracy and running time of the optimization. We discretize the contin-

uous solution space as the labeling space. For linear parameters q˛ ðrx;ry;rz;tzÞ, the labeling space is defined as: Lq = q+
�
0; ± qmax

k
;

± 2qmax

k
;/; ± kqmax

k

�
, where qmax is a user-defined parameter that defines the maximum deviation of q, and k controls the number of

labels for each parameter. For the scaling factor s, the labeling space is defined as:

Ls = exp

�
log s+

�
0; ±

log smax

k
; ±

2 log smax

k
;/; ±

k log smax

k

��
:

The pairwise term is defined as bijðli;ljÞ = SðT qðM; li;ljÞ;G;zÞ, where T qð,; li; ljÞ represents the transformation with the parameters q

and the labels li and lj assigned to vi and vj, respectively, and the similarity function. For the unary term, we assume that there is no

prior knowledge about the optimal label assignment, and thus set the unary potential function as uiðliÞ = 0, ci˛V. In this case, the

energy function EðL;U;BÞ is simplified as:

EðL;BÞ =
X
ði;jÞ˛ E

SðT qðM; li; ljÞ; G; z Þ:

Translation-invariant similarity function. Similarity function S measures the similarity between the transformedmorphological shape

T ðMÞ and the slices G on z heights. It can be decomposed as follows:

SðT ðMÞ;G; z Þ =
XL
i = 1

SiðT ðMÞ;S i; zi Þ;
where Si is the similarity function between the transformed morp
hological shape T ðMÞ and the i-th slice S i on the i-th height zi. To

simplify the problem, we cut themorphological shape with the plane of z = zi to get a pseudo-contour and extract the contour of slice

(described in detail later), turning Si into a contour similarity problem.

Measuring the similarity between two contours is much easier, and we can use for example the Chamfer distance124 as the sim-

ilarity function, which is defined as

CDðC1;C2Þ = 1

jC1j
X
x˛C1

min
y˛C2

kx � yk22 +
1

jC2j
X
y˛C2

min
x˛C1

jjx � yjj22;
where C1 and C2 denote two de-meaning contours, and jC1j, jC2j
 are the number of points in C1 and C2, respectively. The Chamfer

distance is symmetric and translation invariant, and it is also easy to calculate. Nevertheless, a well-known limitation for chamfer dis-

tance is its sensitivity to outliers and difficulty in handling partial overlap cases, e.g., some slices are only partially observed

(measured). To address this issue, we propose to use the robust Iterative Closest Point or ICP algorithm, an outlier robust point cloud

registration algorithm, to measure the similarity between two contours.

The calculation of robust ICP is simple, and can be summarized as follows. Given two contours C1 and C2, it first finds the closest

point yi in C2 for each point xi in C1 within a manually set threshold. Second, it estimates the translation t that minimizes:

bt = min argt

XjC1 j
i = 1

kxi � ðyi+tÞk22:

Then it translates C2 by bt, and repeats the above steps until convergence. In the end, the similarity between C1 and C2 is defined as

the number of inliers divided by the number of points in C1, which can be expressed as:

SiðT ðMÞ;S i; zi Þ = ICPðC1; C2Þ = 1

jC1j
XjC1 j
i = 1

I
�kxi � ðyi+btÞk2 < e

�
;

where e is the threshold, and Ið ,Þ is the indicator function.
Extracting Contour

Contour from mesh

We use pyvista’s contour function directly to get the contour of the mesh M at z height.

Contour from slice

The contour of the slice S i can be extracted using the a -shape algorithm.125 The a-shape algorithm is a generalization of the

convex hull algorithm, which can extract the contour of a point set with holes. The a-shape algorithm is parameterized by a parameter

a, which controls the size of the holes.When a is small, the a-shape algorithm is equivalent to the convex hull algorithm, andwhen a is

large, the a-shape algorithm is equivalent to the minimum spanning tree algorithm. Alternatively, we also employ an image-based

method that first converts the slice into a grayscale image, then applies a grid to segment it into manageable regions, followed by

using the well-developed OpenCV contour extraction algorithm to delineate the contours of the slice.
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Discrete Optimization

The discrete multi-labeling optimization problem discussed above can be solved using the graph-cut techniques, e.g., a-expan-

sion126 and FastPD algorithm.127

The process of performing mesh correction in Spateo package is as follows:
We list the major parameters for Spateo pairwise alignment, multi-slice refinement, and mesh correction, as well as the corre-

sponding explanations and default settings in the following table:
Major parameters of 3D alignment algorithm, their explanation and the default values.

Parameters Explanation Default

b Length-scale of the squared exponential or SE kernel. Larger value means less correlation

between points and more flexible non-rigid deformation, and vice versa.

1e-2

Ba Hyperparameter that controls the shape of the Beta distribution for the prior of g. Larger

value means more outliers are expected, and vice versa.

1

Bb Hyperparameter that controls the shape of the Beta distribution for the prior of g. Larger

value means less outliers are expected, and vice versa.

1

(Continued on next page)
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Continued

Parameters Explanation Default

k Hyperparameter that controls the shape of the Dirichlet distribution. A larger i-th value

means that cell i in sample A has a greater likelihood to generate more cells, and vice versa.

1

m Number of sparse inducing points used for Nyström approximation for the kernel. Larger

means better approximation ability, but increased computation, and vice versa.

15

b Size of the mini-batch of SVI. size(sampleB) / 10

K The number of top K nearest neighbors in guiding optimization. 10

l Weight for guiding optimization 1

Multi-max-iter Maximum number of iterations of the optimization 200

N Number of neighbors considered in multi-slice refinement. 4

multi-max-iter Maximum number of iterations for the multi-slice refinement. 3

k Number of labels for each transformation parameter 15

e Inlier-outlier threshold for the ICP in the mesh correction. 0.1 * spatial scale

mesh-max-iter Maximum number of iterations for the mesh correction. 10
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Create surface polygon mesh, volumetric mesh, and voxel models of a whole embryo, or individual organs from 3D

point clouds with PyVista

In addition to the scalable, efficient, and powerful 3D alignment algorithm, another key innovation of Spateo is its ability to perform

various downstream 3D modeling and morphometric analyses with the 3D aligned points clouds. In particular, we leverage the

PolyData data structure from PyVista to represent the 3D point cloud, where each cell is annotated with the tissue identity, using

the following function:
With the point cloud data, we can build upon several established algorithms to create surface polygon meshes for the entire em-

bryo or different organs, as shown below:
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The methods for constructing surface meshes include:

‘pyvista’: Generate a 3D tetrahedral mesh based on pyvista.

‘alpha_shape’: Computes a triangle mesh based on the alpha shape algorithm.

‘ball_pivoting’: Computes a triangle mesh based on the Ball Pivoting algorithm.

‘poisson’: Computes a triangle mesh based on the Screened Poisson Reconstruction.

‘marching_cube’: Computes a triangle mesh based on the marching cube algorithm.

We next set the diameter of each cell’s 3D geometry as that from the segmentation to obtain 3D volumetric meshes of each cell. In

Spateo, three geometries, including cube, sphere, and ellipsoid, are supported:
We can also voxelize the closed surface mesh into 3D voxels:
The implementation of building point cloud, surfacemesh, and 3D cell geometry or voxel models in Spateo is a highly flexible strat-

egy that can be generally applied to a single organ or the entire embryo.

Spatial domain digitalization
In this section we will first describe digitization in a 2D space and then generalize it to 3D space. Spatial domain digitalization de-

scribes the process of constructing a spatial coordinate reference system in accordance with any arbitrary axis, enabling identifica-

tion of genes with graded or periodic distributions along the directions defined by this coordinate system.Mathematically, for an arbi-

trarily-shaped spatial domain, a digitalization result is determined by the shape of domain boundaries, boundary-derived isolines

(analogous to equipotential lines in physics or cartography) and perpendicular streamlines that define regions within the recon-

structed coordinates system. In detail, digitalization of a spatial domain U is adapted by mapping the potential field in physics,

i.e., a scalar field such as the electrical field, given boundary conditions. To be specific, a continuous U is digitized according to

the gradient of a scalar variable Vj (e.g. spatial layer/column values), which depends inversely on the distance of a given bucket r

(a bin or a cell) to the target boundary G (as vU). Such a scheme can be modeled by Poisson’s Equation:

V2jðrÞ = fðrÞ for r ˛U;

where f is the known function of r in the domain U. Importantly, the potential field j can only be solved when boundary conditions

(BCs) are defined. The conditions are either specified by the bucket-wise values (called Dirichlet or class I BC) under certain known

function g1,

jðrÞ = g1ðrÞ for r ˛GD;

or by the normal derivative of the solution on the boundary (called Neumann or class II BC)
e13 Cell 187, 1–23.e1–e45, December 26, 2024
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v

vbn jðrÞ = g2ðrÞ for r ˛GN:

These BCs are crucial to determine j via iteration methods in numerical analyses, especially when the geometries of boundaries

are complex and irregular.

In this study, we first digitalize the spatial domain with a steady-state field (and then infer the effect of the true internal sources by

highly variable genes along the potential gradients that violate the null hypothesis), thus it simplifies Poisson’s equation to its homog-

enous case (f = 0): Laplace’s equation. In the three-dimensional (3D) space, Laplace’s equation is written as:

V2j =
v2

vx2
j+

v2

vy2
j+

v2

vz2
j = 0:

For visualization purposes, we first use the basic two-dimensional form to demonstrate the numerical solution with the Jacobi

method under the supplied boundary condition:

v2

vx2
j +

v2

vy2
j = 0;

and further extend it to the 3D space.

Numerically, the equation is discretized as

ðJi+1;j � Ji;jÞ � ðJi;j � Ji� 1;jÞ
Ox2

+
ðJi;j+1 � Ji;jÞ � ðJi;j � Ji;j� 1Þ

Oy2
= 0:

When we choose Dx = Dy for homogeneity in both x; y dimensions, the equation can be written as

Ji;j =
1

4
ðJi� 1;j + Ji+1;j + Ji;j� 1 + Ji;j+1Þ:

Now, the discrete form of Laplace’s equation shows that the potential of the central grid point is the equal-weighted average of four

neighborhoods.

Based on the Jacobi method,128 for all interior grids at the (k+1)-th iteration, we have:

Jk+1
i;j =

1

4

�
Jk

i� 1;j + Jk
i� 1;j + Jk

i;j + Jk
i;j

�
:

And for an enclosed domain, any neighbor of an interior grid would not fall out of the boundary, no matter how irregular the domain

shape is. The iteration process ends either with convergence when the normalized L2 loss

Loss =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
interior

�
Jk+1

i;j � Jk
i;j

�2s
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
interior

�
Jk

i;j

�2s

between two iterations is below 1e-5 by default, or when iterations surpass the maximum number of iterations (default 100000).

We then solve the real-world boundary problem. For any shape of a bounded domain, the boundaryG can be arbitrarily divided into

four connected boundaries with specified breakpoints. With two sides, GD2
and GD4

, respectively hold the fixed potentials as the Di-

richlet BCs, the equipotential lines (the dotted lines with arrows) are naturally perpendicular to the Neumann BCs GN1
and GN3

. Note

that the normal derivative for an irregular boundary can not satisfy the numerical estimation, we project the original Neumann bound-

aries to two custom line segments, thus approximate the Neumann BC to Dirichlet BCwith uniform distribution along these segments

(or original boundaries, with slight loss of precision) for downstream analysis.

It is derived as

v

vbn jðrÞ = 0 0 jðrÞtbn for r ˛GN 0 jðrÞ = uniformðc1; c2Þ with Vj:

And

jðrÞ = c1 for r ˛GD2
; jðrÞ = c2 for r ˛GD4

:

For numerical convenience, the grids that lay outside the potential field are set to value zero and c1 and c2 are symmetric about

zero. By default, we set c1 = � 1 and c2 = + 1,

The final task becomes to solve j with the equation:

v2

vx2
j +

v2

vy2
j = 0;
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with the boundary conditions

jG1
= uniformð1; � 1Þ; jG2

= � 1; jG3
= uniformð�1;1Þ; jG4

= 1:

To hold these Dirichlet BCs during the iterative updating, the values of the boundary grids should be re-initialized during each iter-

ation. This process is crucial to insulate the influence of any exterior grid when only the four closest neighbor grids are applied to

calculate the value of the target grid in the Jacobi algorithm.

Once the solution of j is obtained (numerically, every grid has its potential valueJi;j), the domain is theoretically digitalized and can

be partitioned intomeshes of any equal-area size. To dissect the ‘‘layers’’, the equipotential lines are generated by ligation of the grids

with the same value from boundary GN1
to GN3

and evenly spaced with a constant interval. For the ‘‘columns’’, we propose two ap-

proaches to handle the boundaries GD, with varying degrees of complexity. The first approach is the ‘‘one-step’’ approach.

When the boundaries are relatively regular or smooth, the concept of calculating streamlines that are perpendicular to the equipo-

tential lines is workable. It is equivalent to calculating the tangent vector field,

tan qi;j =
Dyi;j
Dxi;j

;

for each grid, and it is numerically solved by the Runge Kutta fourth order method (RK4) for approximating the solution of ordinary

differential equations. After the tangent field is constructed, the streamlines are computed by starting at any point of GD2
, perpendic-

ularly crossing each equipotential line under the direction of the tangent field, and finally reaches the boundaryGD4
. However, in prac-

tice, the RK4 method decreases its precision along with increment of the boundary irregularity.

The second approach is the ‘‘two-round’’ approach. In the first round of the digitalization, only equipotential lines are recorded as

the result of domain layering. And the method then can be interpreted as rotating the domain 90 degrees, and repeating the whole

process but orthogonally columning the domain in the second round. This approach is a rough but effective approximation that can

be adapted in most real-world cases without any extra parameter settings.

In the Spateo package we can use st.dd.digitize to digitize the spatial domain of interests into different layers or columns:
For an enclosed 3D domain, the Jacobi method still works, where the three-dimensional form of potential for each central point

becomes:

Ji;j;k = 1
6 ðJi� 1;j;k +Ji+1;j;k +Ji;j� 1;k +Ji;j+1;k +Ji;j;k� 1 +Ji;j;k+1Þ:

However, it could be difficult to define the boundary surface in 3D space, and the rate of convergence usually slows down when

comparing the solution in two-dimensional space.

The potential equation can be further generalized with a customized adjacency matrix to adapt for non-orthogonal coordinates:

Jv =
Xn� 1

u = 0

Au;vJu;
where J is the potential for cell v, and A is the adjacency matrix
v indicating the neighbor relations between n cells. A can be either

unweighted grid, such as 3Dmesh, or weighted network like k-nearest neighbor graph. Then, the potential for the ðk + 1Þ-th iteration

can be written as:

Jk+1 = AJk :
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In this case, the initial potentialJ0 should be tailored with the potential of boundary cells defined as c1 = � 1 (the lower bound) and

c2 = + 1 (the upper bound) by default. The solution of j can be obtained using the same iterative solver and L2 loss function as

described previously.
Spatially-aware modeling of networks of cell-cell interaction or CCI in 3D spatial transcriptomics
In the following, wewill explain the algorithmic details related to the cell-cell interaction introduced in the schematic of Figures 4C and

5B. In the schematic, the inputs to CCI include coordinates to construct the spatial graph (x, y, z) and an RNA counts matrix. The goal

for CCI models is to predict the expression of target gene(s) as a function of signaling information (which is derived from ligand and/or

receptor expression). In short, using 3D positions of each cell (Figure 4B, lower panel, upper left), the ‘‘signaling landscape’’ is defined

in terms of which cells it may be communicating with and the molecules involved (Figure 4B, lower panel, upper right). Processing

depends on the chosen model type (details in section ‘‘classes of cell-cell interaction model’’). The total number of neighbors of each

cell type can be counted, resulting in amatrix of shape (number of cells x number of cell type labels), or total expression of ligands can

be queried for all neighboring cells, resulting in amatrix of shape (number of cells x number of ligands) or (number of cells x number of

L:R interactions) if total ligand expression in the neighborhood is convolved with receptor expression in the cell (bottom right box,

labeled ‘‘L:R model’’). For each target gene, a spatially-weighted generalized regression model (details in section ‘‘spatially-

weighted modeling for characterization of spatial specificity of signaling effects’’) is fit (Figure 4B, lower panel, lower left), incorpo-

rating spatial distance. The result is an array of cells x coefficients (Figure 4B, lower panel, lower right, labeled ‘‘Coefficients’’).

Furthermore, the downstream model (Figure 4C) can further extend the upstream model in Figure 4B to infer both intercellular

(L:R) interactions and intracellular (TF-target) regulations. This downstream model is also a weighted generalized regression model

(details in ‘‘weighted modeling for downstream (transcription factor-gene) model’’), using gene expression rather than spatial coor-

dinates to derive the weights. The weighting in upstream and downstream models helps to account for heterogeneity within the

sample.

Problem definition

Our goal is to make predictions about inter- and intracellular molecular relationships involved in the process of cell-cell interaction

(i.e. the downstream expression induced by the activity of a ligand, or the regulatory effect of a transcription factor (TF) on a

particular ligand-encoding gene). From spatial transcriptomics data, we use the spatial information for each cell to construct a

spatially-weighted graph defining the most likely cells to interact with any given cell. We use prior knowledge networks to simplify

the complex task of considering possible effectors from amongst the thousands of ligands, TFs, etc. Using this knowledge, we set

up a regression task, where the predictor variables are the possible modulatory genes (ligands, receptors, or TFs, etc.) and the

response variable(s) to be described is the chosen target gene(s), which can be any gene. We introduce a spatially-weighted infer-

ential framework to perform the regression, capable of assigning cell-specific coefficients to provide insight into where a particular

interaction may be occurring and how other genes might cooperate with it. We describe each of these processes in

sequence below.

Infrastructure

Spatial and expression weights.

We represent the spatial and expression neighborhood of each cell via a weighted undirected graphGðV ;EÞ, where each vertex v˛ V

represents a cell and each other vertex in its neighborhood is connected to v by an edge with weight dependent on the distance be-

tween the two vertices. These distances are computed using the spatial coordinates of each cell in 2D slices or 3D aligned slices, or

using gene expression to compute distance in gene expresson space (see below). Programmatically, this is encoded as a weighted

adjacency matrix. The neighborhood of each cell is defined using either the fixed-radius nearest neighbor or k-nearest neighbor

approach. This is implemented by the bandwidth parameter bw in terms of m or k, where m represents either the radial distance

bound from each cell within which neighboring cells are given nonzero spatial weight (given by boolean parameter ‘‘fixed’’) or a value

that is computed individually for each cell such that the nearest k neighbors are given nonzero spatial weight. For each cell i, the dis-

tance vector d of shape ðn; Þ in either gene expression space (given by the principal components, or as an indicator array of identical
Cell 187, 1–23.e1–e45, December 26, 2024 e16
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shape to the expression array where expressed genes are represented as ones and non-expressed genes as zeros, etc.) or physical

space is computed by finding the distance between cell i and all n cells j:

di;j =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXN
c = 1

ðcoordc;i � coordc;jÞ2
vuut ;
where N is the dimension of the genes when computing distances
 in gene expression space, or either two or three depending on the

dimensions of the sample when computing distances in physical space. c is the axis index (i.e. x, y, z). Distance can be conditioned on

variables ‘‘ct’’ and ‘‘cov’’, where ‘‘ct’’ is a vector of shape (n, ) with the numerically encoded cell type identity of each cell, and ‘‘cov’’ is

similarly a binary vector of shape (n, ) representing any arbitrary distinction (e.g. ‘‘drug’’ vs. ‘‘control’’). If provided, cells not of the same

cell type or notmatching the categorical characteristic of a given cell have spatial weights set to zero. Eachweight decays as a function

of distance, determined by a combination of user-defined bandwidth and kernel parameters. Six kernel options are available:

‘‘Triangular’’:

wij =

8><>: 1 �
	
dij

bw



; if dij < bw;

0; otherwise:
‘‘Uniform’’:

wij =

�
0:5; if dij < bw;
0; otherwise:
‘‘Quadratic’’129:

wij =

8><>:
3

4

"
1 �

	
dij

bw


2
#
; if dij < bw;

0; otherwise:
‘‘Bisquare’’130:

wij =

8>><>>:
"
1 �

	
dij

bw


2
#2
; if dij < bw;

0; otherwise:
‘‘Gaussian’’:

wij =

8<: e
� 0:53

	
dij
bw


2

; if dij < bw;

0; otherwise:
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‘‘Exponential’’:

wij =

8<: e
�

	
dij
bw



; if dij < bw;

0;otherwise:
where di;j is the distance between cell i and cell j, and bw is th
e bandwidth parameter. By default, a bisquare kernel is used. In

modeling, the process of spatial weight computation is used to construct the predictor matrix when incorporating e.g., ligand expres-

sion information from the neighboring cells. In addition, it can be used to select the neighboring cells considered in the regression

process for each cell.

Spatial/gene expression weight matrix construction can be performed manually with commands similar to the below example:
where ‘‘n_samples’’ is the total number of samples in the dataset, ‘‘coords’’ is an array containing the coordinates of each sample,

‘‘exclude_self’’ indicates whether to include or ignore the sample itself in computation, ‘‘bw’’ is either a radial distance bound from

each cell or a non-fixed value representing k nearest neighbors (for ‘‘fixed_bw’’ is True or False, respectively, as explained above),

‘‘threshold’’ is a weight below which spatial weights will be set to 0, ‘‘sparse_array’’ returns the resulting matrix as a sparse matrix,

and ‘‘normalize_weights’’ scales each weight such that the sum of the weights from each cell to all its neighbor cells is one.
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Structure of prior knowledge files of intercellular and intracellular interactions. For many of themodel classes of cell-cell interactions

to be described, information about ligand-receptor (L:R) pairs, links between receptors and their downstream transcription factors

(receptor-TF), and transcription factor (TF)-target (TF-target) binding pairs is required, either directly or to be used to create the pre-

dictor array. Default databases are included in Spateo’s ‘‘database’’ subdirectory of the ‘‘tools’’ main directory of the package. How-

ever these can be separately provided by supplying any file path that contains the relevant files in.csv format and with the correct

naming convention. At a minimum, the ligand-receptor file must have three columns, labeled ‘‘from’’ (containing ligands), ‘‘to’’ (con-

taining their paired receptors) and ‘‘type’’. The ‘‘type’’ column indicates whether the interaction is mediated by ligands that are mem-

brane-bound (with the specific label being ‘‘Cell-Cell Contact’’), secreted (‘‘Secreted Signaling’’), or components of the extracellular

matrix (‘‘ECM-Receptor’’). The receptor-TF file must have two columns, labeled ‘‘receptor’’ and ‘‘tf’’, with self-explanatory contents.

The TF-target database file must contain an array X ˛RN3M, where N is the number of target genes (such that each row corresponds

to a gene) andM is the number of transcription factors (such that each column corresponds to a transcription factor). The default L:R

database was originally compiled for CellChat,131–135 information for the default receptor-TF database was compiled from a

combination of the Kyoto Encyclopedia of Genes and Genomes (KEGG)132, REACTOME133 and OmniPath.134 A ‘‘signaling

importance score’’ was calculated and included in the default database; although not used explicitly in modeling, it can be used

to filter the database. This score is computed using Personalized PageRank (PPR)135, with the receptor as the seed node, similar

to the process employed by NicheNet.136 The default mouse TF-target database is assembled from a mouse scATAC-seq atlas,

spanning over 100,000 cells from 13 tissues.137 The default human TF-target database was compiled by querying the promoter

regions of each gene for motifs from the gimmemotifs138 vertebrate database, version 5.

Data imputation. To account for the sparsity of gene expression data, we developed a protocol for interpolation of gene expression,

informed by biological prior knowledge (i.e. TF-target relationships) and expression patterns in the local neighborhood of each cell.

Overall, this operation can be described by

Xnew = Wfinal,X;

where Wfinal is initially the spatial weights matrix, computed as described in the ‘‘Spatial weights’’ section. This initially serves to

restrict the smoothing operation to use data from only the neighboring cells. We additionally condition smoothing to use data

from only cells of the same type, which are more likely to share molecular features (marker gene profiles, chromatin accessibility

states, etc.). We compute the Hadamard product between the weights matrix and the ‘‘cell type mask’’:

Wct = W+ct;

Where each row of the ct binary array corresponds to a cell, and columns are used to specify cell type identity:

ct½i; j� =

�
1; if cell type i = cell type j;

0;otherwise:

Furthermore, we condition smoothing to use data from only cells that have a similar transcription factor expression profile. From

gene expression array X, we extract subset XTF using the information from our database (see ‘‘structure of prior knowledge files of

intercellular and intracellular interactions’’). For each cell i and TF j, we define whether the TF is expressed,

B½i; j� =

�
1; if XTF½i; j�> 0;
0;otherwise:

We compute the Jaccard similarity between each pair of cells i and k:

J½i; k� =
jB½i; :�XB½k; :�j
jB½i; :�WB½k; :�j ;
where the intersection jB½i; :�XB½k; :�j can be calculated as the do
t product between the TF expression vectors for the two cells, and

the union as the total sum of both vectors minus the intersection. This quantity thus represents the fraction of TFs that are shared by

two cells from the set that are expressed by at least one. The full formula for the Jaccard similarity can be represented as:

J½i; k� =

P
j

B½i; j�,B½k; j� P
j

B½i; j�
!
+

 P
j

B½k; j�
!

� P
j

B½i; j�,B½k; j�
:

We define another binary array to use as a mask by checking if the Jaccard index is higher than the median of all nonzero Jaccard

similarity (P+
medianðJÞ):

Jm½i; j� =

(
1; if J½i; j�RP+

medianðJÞ;
0; otherwise:
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The final weights can be defined as:

Wfinal = Wct+Jm:

Stratified subsampling to select cells for modeling. As an individual regression is performed for each calibration location, the cali-

bration process is computationally intensive and time-intensive. Tomitigate this for larger datasets, we developed an optional spatial

subsampling strategy to reduce the total number of calculations by performing them on a subset of cells of the whole sample. We

select cells uniformly across the sample using the spatial coordinates. We then approximate the interaction effect for non-sampled

cells based on those predicted for their selected neighbors, taking advantage of the fact that cell-cell interaction occurs over local

neighborhoods.We first partition the dataset into spatial clusters using k-means clustering on the spatial coordinates. We set an arbi-

trary number of clusters, equal to 1% of the number of cells (such that 100 cells on average are sorted into each spatial cluster). For

the resulting spatial clusters

C =
�
c1; c2;.; cnclust

�
;

we compute the expression density of each target gene:

densityðcÞ =
count nonzeroðy˛cÞ

lengthðcÞ :

Within each spatial cluster, we randomly subsample cells, but apply weighting based on the size of the spatial cluster and the

computed expression density:

nsample nonzeros = int
��ðlengthðstratumÞ=2 Þ3density

��
;

where stratum indicates the set of cells in the given spatial cluster
. We sample equal or more cells without target expression to those

with target expression. Tomap non-sampled points to sampled points, we compute the pairwise Euclidean distance between all non-

sampled cells and sampled cells. After model fitting, for each non-sampled point, we assign the coefficients predicted for its nearest

sampled neighbor. The high number of spatial clusters in the sampling procedure prevents non-sampled points from being far

from sampled points such that they are not exposed to similar signaling environments.

Classes of cell-cell interaction model

Spateo’s cell-cell interaction modeling framework consists of three classes of models, the ligandmodel, ligand:receptor (L:R) model,

and the niche model. All these models reveal the intercellular interactions while the downstream model can be used to further reveal

intracellular interactions. Thesemodels all aim to quantify the effect of cell-cell interaction on gene expression in the receiving cell but

differ in the way how each model class is defined. Specifically, they differ in the composition of the predictor matrix: the ligand:re-

ceptor (L:R) model convolves receptor expression levels with an aggregative measure of expression of the ligand in the local neigh-

borhood. The ligand model is similar, but considers only expression of the ligand in the local neighborhood; however, this is condi-

tional on the presence of at least one cognate receptor expressed in the receiving cell, or on the presence of transcription factors

associated with said receptor(s). The niche model instead creates a binary matrix where each feature is a cell type, and ones indicate

presence of a cell of that type in the local neighborhood, aiming to describe gene expression in a cell as a function of the presence of a

putatively interacting cell type. Post-training, downstreammodels can also be employed to elucidate the impact of transcription fac-

tor expression on the expression of ligands that were utilized by the upstreammodels or on the expression of target genes predicted

by the upstream models, thereby constructing an integrated network of intercellular communication.

Generalized linear models

Multiple potential sources of technical variation lead to overdispersion and high dropout rates in single-cell data, producing charac-

teristic right-skewed count distributions and breaking the normality assumption of the raw or log-transformed counts that result in

inferential underpowering of general linear models. In accordance, a generalized model is used instead that fits data at the level

of reads or UMIs, under the assumption that gene expression follows a negative binomial,139 zero-inflated negative binomial,39,140,141

or Poisson distribution.142–144 Poisson distributions are more computationally efficient in comparison, so a Poisson distributional

assumption was made in the main and supplemental analyses of our mouse embryo dataset, which involve large quantities of cells.

Methodological details will likewise be provided through the lens of this assumption. For each gene of interest, Yi;j, the observed RNA

counts for cell i and gene j, is modeled. Poisson sampling is assumed such that

Yi;j

��li;j � Poissonðli;jÞ;
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with expected transcript count li;j. In the case of a generalized linear model (GLM), the predicted variable is not a linear function of

the predictors, but instead related through a differentiable link function:

gðli;jÞ = Xb:

The final predicted value therefore comes from application of the inverse link function:

li;j = g� 1ðXbÞ:
In our case, the resulting li;j is a mixture of k explanatory variables xk ˛ℝk;j for each gene j, defined generally by

li;j = exp

 XK
k = 1

bk;jxk

!
;

where each predictor vector xk for variable k is parameterized by l
inear coefficient bk ;k = f1;2;:::;Kg. In general, each variable k can

take two forms. For Spateo’s modeling core, these are:

Indicator variable, as is the case for theNichemodel. In this case, xk is always either 0 or 1, representing e.g. a classification into a

particular cell type among a set of possible cell types (among any other possibility involving categorical labels).

Discrete or continuous variable, as is the case with the ligand-receptor and ligand models. In this case, xk can take on continuous

values representing e.g. gene expression. However, it is recommended to discretize this such that raw counts are used for model

input, as the recommended distributional assumption is either Poisson or negative binomial. Both the Poisson and negative bino-

mial distributions are discrete, representing a count of a number of events, so to avoid violating this, transcript counts should be

used instead of normalized data.

In the context of our Poisson regression, each coefficient bk;j can be interpreted as the log fold-change of gene expression per unit

change in xk;j for variate k and gene j. Formodel fitting, the Poisson distribution is parameterized such that the probability of observing

given transcript count Yi;j is maximized; this can be achieved by maximizing the log-likelihood of a Poisson distribution:

lðmjyÞ =
Xn
i = 1

�
yiqi � eqi � log yi!

�
;

where qi is the linear predictor of the model:
qi = hi = xt
ib;

and m is the result of applying the inverse link function to the linear predictor:

m = expðxibÞ:
The optimization process involves choosing parameters b such that the likelihood is maximized, a process which can be repre-

sented as follows:

argmaxblðmjyÞ:
As the relationship between the estimation and the parameters is nonlinear, the roots/optima of the equation can be found using the

Newton-Raphson method, which updates b iteratively until convergence using the derivative of the log-likelihood scoring function,

included here to illustrate the concept of iterative updates to b:

bk+1 = bk +
�
XTWX

�� 1
S
�
bk
�
;

where XTWX is the negative of the derivative of the scoring funct
ion. This is simplified by instead using the equivalency of Newton-

Raphson to iteratively reweighted least squares (IWLS); from simplifying the Newton-Raphson equation:

bk+1 =
�
XTWX

�� 1
XTWz; where z =

�
Xbk +

vh

vm
ðY � mÞ

�
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As shown here, z represents pseudo data initially generated from the observed data and the estimates of the model parameters.

For Poisson data:

vh

vm
= exp ð�hÞ:

Recall from the above equations that h is an alias for the linear predictor. X is an n by kmatrix of predictor variables, andY is an n by

1 vector response variable. W is an n by n matrix, defined as:

W = A
vm

vh
:

For a Poisson GLM, A is the identity matrix.

As the number of molecules is typically high and the nature of the distributional assumption contributes to explosive increases in

estimated values for unit increases in the predictor, estimated parameters are constrained to have smaller values by incorporating an

additional ridge regression cost function145:

JðbÞ = �
"Xn

i = 1

�
yi � xTi b

�2
+ l

Xp
j = 1

b2
j

#
;

where l is the regularization parameter, which can be provided during model instantiation.

Predictor matrix setup

For all models, the shared required inputs are the gene expression matrix Y ˛RN3G, whereN is the number of cells andG the number

of genes, and the array of spatial coordinatesC˛RN3M, whereN is the number of cells andM the spatial dimensionality (either two or

three dimensions) of the data. Expression vectors for all ligands, receptors, transcription factors, and target genes are taken from the

gene expression matrix. Given values for the number of neighbors to consider for membrane-bound and secreted L:R interactions,

spatial weights matrices are automatically computed from the spatial coordinates. In model instantiation, each of these is automat-

ically extracted from a given path to an AnnData object-containing file (and given a few guiding inputs e.g., the name of the key to the

AnnData field containing cell type information). Models can be defined as follows:
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Ligand:receptor (L:R) model

The LRmodel is designed to quantify the effect of cell-cell interaction via convolving receptor expression levels with the average local

neighborhood’s ligand expression. Similar to the ligand model, three key components are used to construct the predictor matrix for

this model: a list of receptors (or the path to a text file containing one receptor per line) and the other two are the same as the

Ligand model.

Some proteins, for example transforming growth factor-b receptors and certain cytokine receptors, requiremulti-subunit assembly

for function.146,147 For receptors for which this is true, the geometric mean is used to combine the expression vectors of the individual

components.

rcomplex =

 Yn
i = 1

xi

!1
n

:

The expression of all receptors (and complexes) r comprise the receptor array R.

For each cell, the amount of ligand in the cell’s spatial neighborhood is quantified by the summation of the ligand’s expression

across all neighbor cells, modified by the spatial weights (as specified in the ‘‘Spatial and expression weights’’ subsection of the

‘‘Infrastructure’’ section). For cell i and ligand j,

Lij =

8>><>>:
Xn

k = 1
wik;secreted 3Xkj; if ligand not membrane-bound;Xn

k = 1
wik;membrane�bound 3Xkj;otherwise:
wherewik is the weight between cell i and cell k, and Xkj is the numb
er of counts for ligand j in cell k. Similarly, we can also calculate the

L:R paired array. We start from two arrays where each column corresponds to one of j ligands or one of l receptors or receptor com-

plexes, respectively. Each row of both arrays is one cell. The L:R paired array can be constructed by first finding the set of possible

L:R pairs, referencing the provided L:R database and then performing an elementwise multiplication for each relevant L:R pair:

LRi = ai,bi;
where ai or bi is the ith element in the column of L or R correspon
ding to the ligand or receptor of interest in cell i.

The resulting feature space is often high-dimensional, with possibly multiple ligands paired to a given receptor. As a given receptor

will activate similar downstream processes for multiple ligands, we combine ligands that can bind a given receptor as a biologically-

informed feature selection. The combined column is created by taking the arithmetic mean of the columns for each individual ligand.

The final predictor matrix is log-transformed and then normalized by min-max scaling, to alleviate differences in scale between

features.

Ligand model

The ligand model is designed to quantify the effect of cell-cell interaction by considering the ligand expression landscape in the

spatial neighborhood. One advantage of the ligandmodel over its L:R counterpart is its comparatively less combinatorial complexity.

Furthermore, although it may be unable to evaluate how a predicted signal is being received and interpreted to result in upregulation

of expression from the model outputs due to the missing receptor information, the incorporation of ligands is biologically significant,

and, in contrast to L:R model, allows the inclusion of ligands for which the ligand-receptor database is incomplete. Two components

(in addition to the AnnData object containing spatial coordinates and the expressionmatrix) are used to construct the predictormatrix

for this model: a list of ligands (or the path to a text file containing one ligand per line), and the path to the directory containing data-

base information. This directory must contain, at minimum, a file titled ‘‘lr_db_{mouse or human}.csv’’, a file titled ‘‘{mouse or human}

_receptor_TF_db.csv’’, and a file titled ‘‘{mouse or human}_GRN.csv’’ depending on the species the data was sourced from. The

predictor array Lij, is constructed as previously described in the ‘‘L:R model’’ section. Information from the ligand-receptor and re-

ceptor-TF databases is used to modify the L matrix post-construction by conditioning on the expression of these receptors or their

downstream transcription factors, even though the cognate receptors are not directly involved. For each ligand j and cell i, Lij is set to

0 if this cell does not express any corresponding receptors or transcription factors (if the cell does express corresponding receptors

or transcription factors, Lij is left as is). The final predictor matrix is log-transformed and then normalized by min-max scaling, to alle-

viate differences in scale between features.

Niche model

The niche model formulates gene expression in a cell as a function of the spatial composition of putatively interacting cell types in the

neighborhood. While this model does not make an appearance in the text, it is also implemented as part of the modeling framework.

Beyond ligand-receptor interactions, the umbrella term ‘‘cell-cell interactions’’ encompasses a wide variety of mechanisms that

leverage diverse molecules, such as ions, metabolites, and even direct genetic transfer that is common between prokaryotic cells.

For model systems where these mechanisms are thought to be particularly important, or which were collected with particularly low-

plex fluorescence-based spatial transcriptomic assays (e.g.MERFISH, STARmap, Xenium, CosMx, etc.) that include few ligands and

receptors, it may be more appropriate to describe in terms of the enrichment of cell types in the microenvironment, as a first step
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towards future molecular-level elucidation. For this model, to construct the predictor matrix, the name of the key in the AnnData ob-

ject’s "obs" slot containing cell type labels is needed. Cell type information initially takes the form CT ˛RN31, where N is the number

of cells. This is a categorical variable that can take on n distinct values, corresponding to each distinct cell type label. This is con-

verted to a one-hot ‘‘cell type identity’’ array, such that each column (each cell) contains all zeros with the exception of the row

that corresponds to its cell type.

OðCTÞ =

2664
dðCT1; c1Þ dðCT1; c2Þ / dðCT1; cnÞ
dðCT2; c1Þ dðCT2; c2Þ / dðCT2; cnÞ

« « 1 «
dðCTn; c1Þ dðCTn; c2Þ / dðCTn; cnÞ

3775;

where c1; c2;/; cn are the unique cell type categories and
dðx; yÞ =

�
1; if x = y;

0;otherwise:

This facilitates a spatial lag operation to quantify the number of cells of a particular type present in the neighborhood of a given cell,

modulated by the spatial weights:

XCT =
Xn
k = 1

wik;secreted 3OðCTÞkj;
wherewik is the weight between cell i and cell k, andOðCTÞ is the
kj cell type identity indicator for cell type j for cell k, either a 1 or 0 as

constructed. Weights for secreted ligands are used for this operation, as cells secreting these ligands are the most distant cells that

are predicted to be influential via L:R signaling.

Downstream (transcription factor-gene) model

This model is designed to operate downstream of the central cell-cell interactionmodels. Thesemodels aim to either identify TFs that

are potentially responsible for induction of ligand gene expression, or which cooperate with the ligand’s cognate receptor to induce

expression of downstream target genes. The predictor matrix for this model is derived from transcription factor expression. Unlike

ligands, TF-target relationships do not depend on the positions of the cells. Instead of spatial coordinates, thismodel uses distance in

‘‘gene expression space’’ to derive the weights used in its inferential process (although not necessary for predictor matrix set up,

these measurements are used in the modeling process- see section ‘‘spatially-weighted modeling for characterization of spatial

specificity of signaling effects’’). To do so, we binarize gene expression to signify expressed or not expressed, and for each pair

of cells, we perform a comparison of the similarity of binarized gene expression profiles with the Jaccard index:

Jij =

��giXgj

����giWgj

�� ;
where g is a binary vector denoting expression (or absence of expression) of each target gene in cell i or cell j.

Feature selection using biological priors

For ligand and L:R models, the constructed predictor matrix is reflective of the ‘‘signaling landscape’’ (in terms of ligands and option-

ally receptors). However, not all of thesemay be truly influential for a particular target. Tomitigate the possibility of an unrelated or less

confident ligand/interaction being used to predict the expression of a particular target, a copy of the full array is modified at runtime in

a target-specific manner, subsetting only to the pertinent ligand/L:R features. To model the regulations from the receptors to down-

stream targets, we recursively select the ligands from the targets. Specifically, for a particular target gene, the TF-target database is

queried to return all transcription factors predicted to be able to regulate that target, defined as the set of ‘‘primary TFs’’. In addition,

transcription factors that can regulate expression of any of these primary TFs are included. From this complete set of TFs, the recep-

tor-TF database is queried to return receptors in the same signaling pathways as these TFs, and finally the L:R database is queried to

return ligands that can bind these receptors. Features incorporating this final subset of ligands are retained for the modeling of

ligands-target interactions.

Mathematical notation for each model class.

Given the mathematical details from ‘‘Generalized linear models’’, a particular gene’s expression Yi;j for cell i and target gene j can

thus be modeled as

d Ligand model

Yi;j � Poisson

(
exp

"Xf
g = 0

bjði;gÞ

 
1ði;L,R;TFÞ

XN
h = 1;hsi

ui;hLh;g

!#)
;

where bjði;gÞ is the coefficient corresponding to the gth ligand,
ui;h is the spatial weight between cells i and h, Lh;g is the expression

of the ligand in the gth L:R pair in cell h, and 1ði;L,R;TFÞ is the value at cell i of the indicator array formed by conditioning ligand
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expression of the gth ligand on relevant receptor/transcription factor expression. For cell i and ligand g, the element ig is 1 only if

at least one of the ligand’s cognate receptors and/or if at least one of the transcription factors downstream of these receptors is

also expressed.

d L:R model

Yi;j � Poisson

(
exp

"Xf
g = 0

bjði;gÞ

 
RT

i;g

XN
h = 1;hsi

ui;hLh;g

!#)
;

where bjði;gÞ is the gth variate for the ith cell in the coefficients a
rray for target gene j, here corresponding to the gth ligand-receptor

pair, and Ri;g is the expression of the receptor in the gth L:R pair for the ith.

d Niche model

Yi;j � Poisson

(
exp

"XC
g = 0

bjði;gÞ

 XN
h = 1;hsi

ui;hch;g

!#)
;

where b is the coefficient corresponding to the gth cell typ
jði;gÞ e category, and ch;g is used to denote the cell type of the hth neigh-

boring cell with C possible categorical classifications. This value will be 1 if the hth neighboring cell is of cell type g.
Spatially-weighted modeling for characterization of spatial specificity of signaling effects
In contrast to traditional global models that assume uniformity in the data-generating process, a spatially weighted Poisson-form

generalized linear model takes the following form for each response variable:

li = exp

 Xk
j = 1

bi;jxij

!
;

where li is the response variable value for cell i, xij is the jth predic
tor variable for cell i and bi;j is the jth parameter estimate for cell i.

From the ‘‘generalized linear models’’ section, the general form for calibration of this model (bearing in mind the adjustment being

made for spatial variability) is

bi =
�
XTWiX

�� 1
XTWiz; where z =

�
Xbi +

vh

vm
ðY � mÞ

�
;
vh

vm
= exp ð�hÞ

Throughout the fitting process, z represents pseudo data initially generated from the observed data and the estimates of themodel

parameters. In this case, bi is a k by 1 vector of parameter estimates for cell i, and Wi is an n by n diagonal spatial weighting matrix

specific to cell i, which is calculated based on a specified kernel function and bandwidth as described in ‘‘Spatial and expression

weights’’. Smaller bandwidth values allow for greater degree of spatial variability, however may have larger standard errors due to

being estimated using fewer data points. The optimal bandwidth is found by examining the corrected Akaike Information Criterion

(cAIC) score, which for a Poisson GLM is given by

cAIC = � 2 3
Xn
i = 1

�
yiqi � eqi � log yi!

�
+ 2 3 k +

23 k3 ðk+1Þ
n � trðSÞ � 1

;

where n is the number of cells, k is the number of features, the term
within the summation is the log-likelihood of themodel, and trðSÞ is
the trace of the hat matrix S, which relates the observed values to the predicted values by the relationship by = Sy. The sum of the

diagonal elements of this matrix serves as an estimate of the effective number of model parameters.

Each row of the hat matrix is computed from the product of the pseudoinverse of the predictor matrix and the final IWLS weights,

such that row i can be represented as

si = xi
�
XTWiX

�� 1
XTWIWLS;i;
where
�
XTW X

�� 1
XT is the pseudoinverse,W is the row of the sp
i i atial weights matrix corresponding to cell i andWIWLS (see ‘‘gener-

alized linear models’’) is given by

W = A
vm

vh
:

A golden search heuristic is used to search for the optimal bandwidth, associatedwith the lowest cAIC score. This involves iterative

regressions, at each iteration choosing a new pair of intermediate ‘‘upper limit’’ and ‘‘lower limit’’ bandwidths within the range spec-

ified by the initial specific minimum bandwidth and maximum bandwidth. These bandwidth updates are given by
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bwl = bwl +

 
1�

ffiffiffi
5

p � 1

2

!
ðjbwu � bwljÞ;
bwu = bwu �
 
1�

ffiffiffi
5

p � 1

2

!
ðjbwu � bwljÞ;
where bwl is the lower bandwidth tested for a given iteration and
 bwu is the higher bandwidth tested for a given iteration. The frac-

tional term is the inverse of the golden ratio.

We suggest the lower bound be no less than that used for membrane-bound ligands, and the upper bound be smaller than or equal

to that used for secreted ligands. Spateo also includes functionality to find these bandwidth values given a target number of neigh-

bors to include. This functionality operates by computing the pairwise distance array. Starting from the initially given bandwidth, the

average number of neighbors for all cells within a radius given by the bandwidth is computed. The bandwidth is adjusted based on

whether the result is higher than or lower than the desired number.
where ‘‘n_anchors’’ can be used to select n exemplar points (to avoid iterating over every cell in the sample if the sample is large),

‘‘target_n_neighbors’’ is the desired number of neighbors that on average over all exemplar cells can be found within the bounds

defined by a given arbitrary bandwidth.

While the exact distance scales cannot be known, we use what is known about ligand-receptor interaction as guiding principles to

infer appropriate distance parameters. For the purposes of the analyses here, ‘‘target_n_neighbors’’ 27 or 250 is used for calculations

relevant for membrane-bound signaling or secreted signaling respectively. For the membrane-bound-signaling, we assume that

each cell will interact only with the cells in its immediate vicinity by these molecular mechanisms. For secreted signaling, ‘‘target_n_-

neighbors’’ 250 is used. The entire domain of communication for a single cell is approximately 250 microns across,148 the average

diameter of a cell is on the order of 10 microns, and the spacing between two ‘‘neighboring’’ cells is on the order of 20–40 mi-

crons,149–151 with 30 used as an intermediate value. To elaborate, from the provided measurement for the distance limit of secreted

signaling (250 microns), we approximate this to be �25 times the diameter of a typical eukaryotic cell.152 Assuming 30 micrometers

between cells as an average value, the effective diameter of each cell increases by 30micrometers. The ratio of the volume enclosed

by the signaling limit,

Vsignal =
4

3
p

	
250

2


3

to that of the effective volume for each cell,

Vcell =
4

3
p

	
40

2


3

is 244. For membrane-bound signaling, we assume cells will only interact with their immediate neighbors, but lack a specific value

for the length scale. In this case, we use cells as a unit of measurement and assume the length scale of signaling is three cells in any

direction (the sending cell and its immediate neighbors on either side), forming a sphere with diameter three times that of the cells

within. This results in 27 predicted potential interacting partners for any given cell. For two-dimensional data, similar calculations (us-

ing the area of a circle rather than the volume of a sphere) result in 70 neighbors for secreted signaling and 9 for membrane-bound

signaling.
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Standard errors of the local parameter estimates

To calculate the standard error of our maximum likelihood estimation, we compute the Fisher informationmatrix, whichmeasures the

amount of information that a random variable Y (i.e. the observed data) carries about an unknown parameter b (i.e. the model coef-

ficients) upon which the probability of Y is thought to depend. This matrix i can be estimated as follows:

Ið bbÞ = XTWIWLSX;
whereX is the predictor matrix. The covariance matrix of the estim
ated coefficients, hereby denotedCi, is given by the inverse Fisher

matrix. Additionally, let the dispersion of the errors from the model be represented as

bs2 =

P ðyi � byiÞ2
n � trðSÞ ;
where n is the total number of observations, yi is the observed val
ue of the dependent variable and byi is the predicted value for cell i,

and trðSÞ is the trace of the hat matrix S. The sum of the diagonal elements of this matrix serves as an estimate of the effective number

of model parameters. From the diagonal elements of the covariance matrix and the dispersion values, we compute the standard

errors using:

SEðbbÞ =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
diagðCiÞbs2

q
:

Following completion of the inferential process, the local standard errors for all parameter estimates are:

SEðbbÞ = ½SEðbb1Þ;SEðbb2Þ;.;SEðbbnÞ�Tn3 k :

Statistical testing of the local parameter estimates

For each local parameter estimate bb i and each standard error SEðbb iÞ, we use the Wald test to test the null hypothesis that the local

parameter estimate is equal to zero. The Wald statistic can be computed as

Wi =
ðbb i � b0Þ2
SEðbb iÞ2

;

where b is the value under the null hypothesis (zero here). Due t
0 o the large size of single-cell spatial data, we can assume that the

Wald statistic follows approximately a standard normal distribution, and use the cumulative distribution function (CDF) of the stan-

dard normal (F) to compute the p-value:

pvals = 23 ð1 � Fðjwald statisticjÞÞ:
To assign ‘‘significant’’ labels, q values are calculated across all features to control the false discovery rate (FDR) using the

Benjamini-Hochberg procedure153 using a default FDR of 0.05.

Downstream analyses
After having fit one of the CCI models (L:R, ligand, niche), additional interpretive analyses can be performed by initializing a down-

stream model (overview provided in ‘‘downstream (transcription factor-gene) model’’ section of ‘‘predictor matrix setup’’) such that

we can integrate both intercellular and intracellular interactions:
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As the arguments are shared with the main model, if this is part of the workflow, it is recommended to define both in a coding

environment.

Predictor matrix setup for downstream (transcription factor-gene) model

The predictor matrix for this model is derived from transcription factor expression. This is only accessible from running the setup and

inference member functions of an instance of the downstream model class.

In this example, placeholder values are given to function arguments, but on a case-by-case basis these will be identical to what is

used to define the ‘‘upstream’’ CCI model. From here, models can be initiated to use the relevant member functions:
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Mathematical notation for downstream (transcription factor-gene) model

A particular gene’s expression Yi;j for cell i and target gene j can thus be modeled as

Yi;j = Poisson

"
exp

 Xf
g = 0

bjði;gÞTFi;g

!#
;

where bjði;gÞ corresponds to the gth transcription factor, and TFi;g
 to the expression of the gth transcription factor in the ith cell.

Weighted modeling for downstream (transcription factor-gene) model

Downstream models also employ a weighted framework (see ‘‘spatially-weighted modeling for characterization of spatial specificity

of signaling effects’’). However, for the downstream models, these weights (W i from ‘‘spatially-weighted modeling for characteriza-

tion of spatial specificity of signaling effects’’) are based on similarity in gene expression rather than spatial distance. Similar to the

‘‘transcription factor-gene’’ model, we calculate the Jaccard index. For the minimum bandwidth, by default we choose the Jaccard

score such that on average, 2% of cells in the sample are included in the threshold defined by this bandwidth. For the maximum

bandwidth, by default we choose the Jaccard score such that on average, 5% of cells in the sample are included in the threshold

defined by this bandwidth.
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where ‘‘n_anchors’’ can be used to select n exemplar points (to avoid iterating over every cell in the sample if the sample is large), and

‘‘target_n_neighbors’’ is the desired number of neighbors that on average over all exemplar cells can be found within the bounds

defined by a given arbitrary bandwidth.

Computation of gene expression (and CCI effect) distribution heatmaps

This function visualizes the relative enrichment of gene expression at various points along a defined spatial axis. It is recommended to

use the key from the AnnData ‘‘.obsm’’ field created by Spateo’s digitization to provide the position coordinates, although any po-

sition key can be used. Henceforth, the position coordinates are referred to as ‘‘pos’’. In the case the ‘‘pos’’ contains Euclidean co-

ordinates, it is recommended to round the relevant dimension (i.e. x-, y-, or z-) to the nearest multiple of ten (this may differ depending

on the scale of the data), to create ‘‘bins’’ for use in computing spatial enrichment. For each gene, the mean expression across the

entire tissue slice/3D reconstructed structure is used as the baseline value, denoted X. The natural log fold change for gene g over the

baseline is calculated for all cells; these values are z-scored and for each value of ‘‘pos’’, the average z-score is taken over all cells

that share that value:

ZLFCj;p
=

1

Np

XNp

i = 1

ZLFCj;i
;

where LFCj;i is the log-fold change for gene j and the ith cell within
 position grouping p and ZLFC is the z-score of this value. For gene j

and region p, the final values of this computation are returned from a smoothing operation:

S
�
ZLFCj;p

�
= RollingMean

0BB@ 1

Np

XNp

i = 1

ln

	
1+

Xg;p

Xj



� m

s
;window = 3

1CCA;
where S is the smoothed ZLFC for gene j at position p, m and s a

j;p

re the mean and variance of the log-fold change across all genes,

respectively. A smoothing operation is used for the purpose of more continuity in the visualization, applied over the immediately pre-

ceding and succeeding positions. For visualization, features are ordered based on how early along the relative position the highest

z-scores occur.
Since dataframes containing the expression of ligands, target genes, etc. are automatically created in preprocessing for fitting the

upstream model, arguments ‘‘use_target_genes’’, ‘‘use_ligands’’, or ‘‘use_receptors’’ can be used to conveniently extract a relevant

set of genes to visualize (otherwise, the gene subset to visualize must be manually provided using argument ‘‘genes’’). Here, ‘‘coor-

d_column’’ is used when ‘‘position_key’’ refers to a field in AnnData ‘‘.obsm’’, to select which coordinate column to use. Otherwise, it

is ignored.

The spatially-weighted nature of the modeling framework also enables this analysis for inferred cell-cell interaction effects.
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Argument ‘‘effect_threshold’’ is a lower bound used to filter the coefficients array before mean and fold-change computation, and

‘‘interaction_subset’’ is used to manually subset interaction-target combinations (otherwise, all combinations are considered).

Build 3D continuous expression model. To reveal the continuous gene expression pattern across 3D space, we developed a deep

learning framework as well as a Gaussian process regression method to map the spatial coordinates to the gene expression. The

neural network contains three consecutive fully-connected layers and uses common activation functions such as ReLU or Leaky

ReLU. The network is trained with the mean squared error (MSE) loss:

L =
1

N

XN
i = 1

XG
g = 1

�
yig � fqðxi; yi; ziÞg

�2
;

where N is the number of the cells in the training set, G is the gen
e numbers, yig is the gene expression for gene g and cell i, fq is the

neural network with the corresponding parameters q, and xi; yi; zi are the 3D coordinate of the ith cell. By default, we train the network

with the Adam optimizer with the learning rate of 1e-4, a weight decay of 2.5e-5, a batch size of 2000, and 1000 iterations.

For the Gaussian process regression, we implemented the stochastic variational GP regression154 using the gpytorch155 package,

which leverages the backpropagation of pytorch and GPU cuda acceleration ability. We use the Gaussian likelihood for the normal-

ized expression and squared exponential kernel for the normalized spatial coordinates. The variational evidence lower bound is cho-

sen as the loss for optimizing the variational GP model. By default, the GP model is trained with the Adam optimizer with the learning

rate of 1e-2, a batch size of 1024, inducing points number of 512, and 50 training epochs.

After training, we can use either the trained neural network or the GPmodel to perform arbitrary slicing or prediction to reveal gene

expression gradients and patterns within the 3D space.

Morphometric vector field and morphometric differential geometry analyses
The concept of vector field, a vector-valued function that assigns a vector for any point in a space, was originally introduced in physics

and used tomodel the speed and direction ofmoving fluid or the strength and direction ofmagnetic or gravitational forces through the

physical space. A vector field is often visualized as quiver plots that assigns vectors on a grid of points in a n -dimensional space or a

streamline plot. The introduction of RNA velocity,156 defined as the time-derivative of the spliced RNA (dsdt = bu � gs), resulted in low

dimensional representation of local cell fate predictions, visualized with grid quiver plots. Although such visualizations have often

been treated as the ‘‘vector field’’, the development of dynamo36 firstly enabled the reconstruction of vector fields in functional form.

In Spateo, we further introduce the notion of ‘‘morphometric vector field’’, which reveals the cell migration during development. It is

worth noting that once we have an analytical vector field of cell migration, the differential geometry quantities that we can calculate

will have direct physical meanings as the morphometric acceleration, divergence, and curl are directly related with morphological

changes, such as expansion, contraction, and twisting, and can further reveal the underlying biological processes. In the following,

we show that the morphometric vector field as well as the differential geometry quantities can be directly derived from the posterior

Gaussian process. Moreover, Spateo is compatible with other OT-based or manually specified cell mapping to compute morpho-

metric vector field and differential geometry quantities based on SparseVFC157 and dynamo.36
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Morphometric Vector Field and Differential Geometry from Gaussian Process

In this study, we suppose that the morphogenesis of an organ follows a smooth, differentiable vector field or a morphometric vector

field in 3D space, that assigns any cell’s current physical position x with a migration velocity vector v, as previously conceptual-

ized.158 In this study, we show that the same ST alignment method introduced in section "Alignment of spatial transcriptomics pro-

filings of serial sections to create 3D models at whole embryo level" can be also applied to 3D spatio-temporal data directly, where

the resulting non-rigid deformation field corresponds to the morphometric vector field which represents themorphological dynamics

during the embryo development. The morphometric vector field V� at any point in the 3D space x� represented by the predictive

Gaussian process posterior has the following form:

qðV�Þ = N
�
V�
��U�G

�1
mu;U�GUT

�
�
;

where mu = s� 2GSUuðPXB �dðKRAÞÞ and S = ðG+s� 2UudðKÞRAÞ� 1. Denote C = G� 1
mu, the exception of V� is

EqðV�Þ½V�� = U�C =
Xk
i = 1

Gðx�; ~xiÞci;
where G is the kernel function, ~xi are the inducing points. We can
 see that the morphometric vector field V�, or the posterior GP, is a

linear combination of the kernels, with the derivative

vGðx; ~xÞ
vx

= � 2w exp
�
� wðx � ~xÞ2

�
ðx � ~xÞ = � 2wGðx; ~xÞðx � ~xÞ:

From this, we can obtain the Jacobian of the morphometric vector field function:

J =
vfðxÞ
vx

= � 2w
Xm
j = 1

G
�
x; x0

j

�
cj

�
x � x0

j

�u
;

and further obtain Divergence, Curl, Acceleration, and Curvature, etc, see section below and dynamo36. To reconstruct the

morphometric vector field from Gaussian process, we use the st.tdr.morphofield_gp function as shown below:
Morphometric Vector Field and Differential Geometry from Cell Mapping

As stated above, Spateo can also learn a morphometric vector field using SparseVFC based on discrete cell mapping by OT-based

methods or based on manual specification. In this paper, we selected this option to study Drosophila embryo morphogenesis, as

detailed below.
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Preprocessing for morphometric vector field reconstruction. A series of preprocessing steps are required for obtaining pairs of cur-

rent 3D spatial coordinates and migration velocity vectors, required for morphometric vector field reconstruction of organ morpho-

genesis based on sparseVFC.157 Specifically, in this study, after we reconstructed 3D models of whole Drosophila embryos, we set

the embryo from the first time point as the reference by transforming the coordinates of the embryo such that the centroid of the em-

bryo is located at origin, where the A-P axis and D-V axis correspond to the x and y dimension in the coordinate system respectively.

To place embryo models from later time points to the same coordinate system of the initial reference embryo model, we align 3D

embryos across time points. To overcome the computational burden of aligning whole embryos, we downsample 2,000 cells

from each embryo and use these cells to perform 3D alignment with PASTE. Next, we rotate and translate the embryos from later

time points based on GPA (generalized weighted Procrustes analysis) to place embryos from later time points to the same

coordinate system. After aligning and transforming the coordinates of embryos, we are ready to calculate pairs of current 3D

spatial coordinates and migration velocity vectors from the aligned embryo across time. We focus on analyzing germ band,

consisting of CNS, epidermis, hindgut, midgut, muscle and salivary gland, or individual organs instead of the entire embryo,

which is more practical given the complexity of the whole-embryo migration pattern and the imperfect data quality. In particular,

for individual organs, we focus on midgut and CNS from E7-9h and E9-10h. We first align all the cells of midgut or CNS between

two time points, again using PASTE, but this time reduce the weight for the spatial preservation by setting a small a, a = 10� 0 to

allow significant cell migration and give more weights on identifying highly similar cells across time points. We next iterate

through the optimal transport matrix P and assign each cell from stage 11 to the mostly like cell in stage 13. Because the cells

from two time points are aligned in the coordinate system, we can take the coordinates Xt from the early time point and the

difference between the future time point to the current time point as velocity vectors or Vt = Xt+1 � Xt. The pairs of Xt;Vt for all

cells at a prior time point can then be used to learn the vector field.

The st.tdr.cell_directions function from Spateo enables us to learn the mapping from cells from the early time point to the later time

point, as shown below:
Reconstruct a morphometric vector field with the sparseVFC algorithm. In order to learn morphometric vector fields from the

discrete cell mapping obtained from OT-based alignment approaches, we consider a set of pairs of 3D physical coordinates of cell

x˛X3R3 andmigration velocities computed from cell mapping v˛V3R3, i.e. fxi; vi ˛X3Vgni = 1, where n is the number of cells from

a prior time point. Although the migration velocity vector based on cell mapping such as the optimal transport alignment is noisy and

discrete, as stated previously we suppose that the morphogenesis of an organ follows a smooth, differentiable vector field in 3D

space that assigns each cell’s current physical position x with a migration velocity vector v, as previously conceptualized.158 In

this study, to reconstruct morphometric vector fields from discrete cell mappings, we will apply sparseVFC157 to reconstruct a

morphometric vector field of organ morphogenesis to robustly learn a vector-valued function f, which outputs an migration velocity

vector v given any physical coordinate x of the cell, based on the observed noisy and discrete pairs of data fxi; vi ˛X3Vgni = 1.

The final loss function of vector field learning with sparseVFC is as following:

FðfÞ =
1

2s2

Xn
i = 1

pikvi � fðxiÞk2 +
l

2
kfk2H ;
where s2 is a parameter accounts for inlier noise, pi is a wei
ght deciding the importance of the i-th data point in the loss function, l is

the regularization coefficient, H indicates the sparse reproducing kernel Hilbert space, and the second term corresponds to a vec-
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tor-valued L2 regularization term. The vector field function can be evaluated at any point in X, as a summation of Gaussian kernels

centered on the so-called ‘‘control points’’:

fðxÞ =
Xm
j = 1

Gðx; ~xjÞcj;
wherem is the number of control points and ~x is the coordinate of t
he control point. c’s are coefficient vectors inR3. And theGaussian

kernel is defined as157:

Gðx; ~xÞ = exp
�
� wðx � ~xÞ2

�
:

Overall, the SparseVFC algorithm157 consists of anE-step and anM-step to allowmodeling of noise velocity (inliers) from the data.

See more details at Qiu et al. 36 and Ma et al.157

To learn the morphometric vector field in Spateo, we will use the st.tdr.morphofield_sparsevfc function as shown below:
Differential geometry analyses of morphometric vector fields: Jacobian, divergence, acceleration, curvature, curl,

torsion

Once the analytical morphometric vector field is reconstructed, we can move beyond morphometric velocity to calculate higher-or-

der differentials, including morphometric Jacobian, divergence, acceleration, curvature, curl, torsion, etc. We start with introducing

Jacobian, a 333 matrix:

J =

2666666664

vf1
vx1

vf1
vx2

vf1
vx3

vf2
vx1

vf2
vx2

vf2
vx3

vf3
vx1

vf3
vx2

vf3
vx3

3777777775
:

A Jacobian element vfi=vxj will tell youwhether themigration velocity of one dimension iwill be affected by another dimension j. The

sum of the diagonal of the Jacobian is divergence:

V,f =
X3
i = 1

vfi
vxi

= TrJ :

Divergence can be used to reveal whether the tissue is expanding (positive divergence) or shrinking (negative divergence).Curl is a

quantity measuring the degree of rotation at a given point in the morphometric vector field and is defined as:

V 3 f =

2666666664

vf3
vx2

� vf2
vx3

vf1
vx3

� vf3
vx1

vf2
vx1

� vf1
vx2

3777777775
:
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The acceleration is the time derivative of the velocity and is defined as:

a =
dv

dt
=

d

dt
fðxðtÞÞ =

Xd
i = 1

vf

vxi

vxi
vt

= Jv :

Similarly, the curvature vector of a curve is defined as the derivative of the unit tangent vector ( ddt
v
jvj), divided by the length of the

tangent (jvj):

k =
1

jvj
d

dt

v

jvj =
Jvðv,vÞ � vðv,JvÞ���vj4 :

Another very interesting differential geometry quantity for 3D vector fields, that has not been discussed in Qui et al.,36 is torsion,

defined as:

t =
ðv3aÞ,ðJ,aÞ

kv3ajj2 ;

which can be used to quantify the degree of twisting of a 3D object.

In Spateo, various differential geometry quantities can be calculated as the following:
Volumetric and morphometric analyses

With the reconstructed 3D voxel model of the organ or embryo, we can categorize morphogenesis modes for each organ, including

organ expansion, shrinkage, migration and convergence. We can further calculate a series of morphometric properties, including

length, surface area, volume, and cell density:
By comparing eachmorphometric quantity across different time points, we can reveal the temporal morphometric kinetics at organ

or embryo level.

Organ backbone analysis with principal curve and principal graph. A principal curve or graph is a p-dimensional curve or graph that

passes through the middle of a data cloud. Previously, principal curves or graphs have been used to infer the pseudotemporal tra-

jectories of linear, bifurcated, circular or other complex biological processes from single cell dataset, e.g. scRNA-seq.103 Here,

we extend their application to reveal the structure of an organ based on the reconstructed 3D models. In Spateo, we incorporated

three powerful approaches to learn the principal curve or graph that represents the organ skeleton: NLPCA159 (Nonlinear

principal component analyses), two RGE (reversed graph embedding) algorithms, including SimplePPT (Simple principal tree

algorithm)

NLPCA. NLPCA is a global learning algorithm, implemented in prinPy (https://github.com/artusoma/prinPy) that we adapted in

Spateo, to compute the principal curve via nonlinear principal component analysis. This algorithm starts with making an initial guess

of a principal curve and iteratively refine the curve by creating an autoassociative neural network with a "bottle-neck" layer which

forces the network to learn the most important features of the data (https://github.com/artusoma/prinPy).

RGE. Reversed graph embedding (RGE) is a general and powerful framework of graph learning that was championed in accurately

and robustly inferring complex pseudotemporal trajectories from scRNA-seq or scATAC-seq datasets. The key novelty of the RGE is

that it simultaneously learns a principal graph of the cell trajectory and often a low dimensional representation of the single cell
Cell 187, 1–23.e1–e45, December 26, 2024 e36
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dataset that can be mapped back to the original high-dimensional space. Various RGE algorithms have been developed, including

SimplePPT, DDRTree, and others, each is developed for certain learning tasks.

The first RGE technique proposed is the SimplePPT algorithm which is tailored for learning a tree structure in the original space, or

in some lower dimension retrieved by dimensionality reduction methods such as PCA. DDRTree is a novel extension of simplePPT

from the RGE family, and is used by Monocle 2103 as the default RGE technique. Compared to the SimplePPT algorithm, it provides

two key features: first, DDRTree explicitly learns the principal graph while simultaneously reducing its dimensionality and learning the

trajectory. Second, DDRTree also dramatically reduces the computational cost by clustering cells into different groups while learning

the principal graph and performing dimension reduction.

ElPiGraph. ElPiGraph is a scalable and robust method for approximation of datasets with complex structures, via approximating

complex topologies with principal graph ensembles that can be combined into a consensus principal graph which does not require

computing the complete data distance matrix or the data point neighbourhood graph.160
Once a principal curve or graph is constructed, similar to pseudotime algorithms that are implemented inMonocle 2/3 , we can proj-

ect each cell in the physical 3D space to the nearest points on the principal curve or graph. Then we can define a root principal point,

such as the head point of the principal graph, and calculate the geodesic distance along the curve or graph to define a measure of

pseudo-space. We use ‘‘pseudo-space’’ to identify principal-curve/graph dependent genes similar to pseudotime-dependent

genes, as previously implemented in Monocle 2/3.

Apply generalized linear models (GLM) to detect differentially expressed genes in different contexts
In this study, we usedGLMas a general approach to identify genes significantly changing as a function of some continuous variables,

such as the digitized layers / columns, the pseudospace defined by A-P axis or the principal curve learned for a particular 3D recon-

struct organ, or the differential geometry quantities computed after learning the morphological vector field. In general, the full model

of the GLM regression is:

logðexpression + 1Þ � nsðvariable; 3Þ;
where ns represents the natural splice. By default, we use 3-orde
r or cubic splines.

And the reduced model is:

log ðexpression + 1Þ � 1:

A likelihood ratio test is then used to compare these two models and to compute p-value. We BH adjust the P-value and define

significant genes as genes with q-val < 0.05.

Explore 3D spatial transcriptomics data with Spateo-viewer
The Spateo-viewer website can be accessed at https://viewer.spateo.aristoteleo.com/. We also provided a tutorial of 22 pages to

introduce the usage of spateo-viewer: https://github.com/aristoteleo/spateo-viewer/blob/main/usage/spateo-viewer.pdf. The

GitHub repository for Spateo can be found here: https://github.com/aristoteleo/spateo-viewer?tab=readme-ov-file

It is also worth noting that Spateo-viewer can be runned as a standalone tool and the users can first git clone the repo, followed by a

few lines of code to start the viewer locally and then open it on the local browser for fast interactive and intuitive data exploration and

analyses. Run the tool locally may avoid the internet traffic of Spateo-viewer website. The steps to use Spateo-viewer locally can be

found here:
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Supplementary Methods
Transfer cell label from annotated scRNA-seq cell atlas to Stereo-seq

To annotate this massive 3D spatial transcriptomics dataset, we transferred cell type labels from an existing single cell atlas.161

We pooled data from all slices to result in a combined dataset for each of the E9.5 and E11.5 embryos. We removed poor quality

cells by filtering out cells with fewer than 100 total counts, reaching a final total of 904,017 cells across 90 slices for the E9.5 em-

bryo and 6,986,674 cells across 84 slices for E11.5. To annotate spatial domains, we first used spatially constrained clustering

(SCC) to identify spatial domains within each slice. Then the spatial domains across slices are integrated and cleaned up in

the 3D space manually (Figure S2A). Past comprehensive atlasing efforts have identified and annotated hundreds of cell types

and their signature gene expression profiles from single-cell data. We used an scRNA-seq reference161, and split the reference

data into a training and test set. We next used scVI39 to jointly project the reference and our Stereo-seq data to a lower-dimen-

sional space and then iteratively annotated the cell type. First, we assigned one of nine possible major trajectories to each cell

(mesoderm, neuroectoderm, central nervous system (CNS) neurons, epithelium, muscles, blood lineages, endothelium, peripheral

nervous system (PNS) neurons and PNS glia). We next trained a classifier on the latent representation of the training set with

XGBoost40 and then tested it on the test set before applying it to the Stereo-seq data. We followed a similar procedure to sub-

cluster each major trajectory. By the end of this hierarchical process, we assigned all cells of the E11.5 embryo to one of 103 cell

types (Figures S2B and S2C), and all cells of the E9.5 embryo to one of 55 cell types. We assessed the quality of cell type anno-

tation by confirming that region specific cell types are enriched in expected spatial locations (e.g. Gut epithelium, midbrain neuro-

ectoderm, Eye field, etc.). For cell types that should be present at high density in particular spatial locations (e.g. Gut epithelium,

midbrain neuroectoderm, Eye field, etc.), we confirmed consistent localization with expectations. Additionally, the average marker

gene profile of the top 50 markers for each mapped cell type in the Stereo-seq data was highly cell-type specific and highly

consistent with that of the scRNA-seq reference, with expression of each marker found to be significantly higher expressed in

the corresponding cell type compared to in all other cell types (Figure S2B). To allow in-depth analyses of the heart, the heart

region was identified, isolated and annotated separately.

Digitization benchmarking

Digitization on simulated and the Macaque cortex section datasets. For the two simulated scenarios (Figures 4E and 4F), we manu-

ally drew a half circle and a trapezoid with FIJI (ImageJ) and then converted the selected pixels into acceptable format for Spateo and

Belayer.25 Digitization was then performed using st.dd.digitize and the Belayer pipeline, respectively.

For the Macaque cortex section, we obtained the T40 section from an atlas of the macaque cortex,38,43 reported by Chen et al. We

dropped the transcriptomics information and only used the spatial coordinates of cells in the section to reduce memory required for

data loading. Digitization was then performed using st.dd.digitize and the Belayer pipeline, respectively.

The digitization values (i.e., potentials) were uniformly divided into 5 groups, representing layers or columns for visualization

purposes.
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Digitization of the Visium mouse brain section dataset. We used the sagittal section of the mouse brain 10X Visium dataset,13 and

clustered the spots using the Leiden algorithmwith Seurat. The cortex region was then extractedmanually according to the clustering

results, followed by Spateo’s digitization. Using digitization values as the relative coordinate along the A-P axis, we can test for

significantly expressed genes along the digitization axis using the generalized additive model implemented in Spateo.

Digitization of theMERFISHU2-OS cell line dataset. Weused a selected set of FOVs from aU2-OS cell line data.117We used the cell

segmentation result from the original work to define the nucleus and cytoplasm. Then digitization is performed for the nucleus to

define an axis from the nucleus centroid to the nucleus boundary. Similarly we used digitization to define an axis from the nucleus

outer membrane to cell membrane for the cytoplasm areas. Using digitization values as the relative distances to nuclear centroid

or nuclear boundary, we can test for significantly expressed genes along the digitization axis using the generalized additive model

implemented in Spateo.

Digitization of the MERFISHmouse brain section dataset. We used selected FOVs from an adult mouse brain atlas,55 and the native

cell type annotations from this dataset. Digitization was performed on a cortex FOV using both st.dd.digitize and the Belayer pipeline.

Then, the digitization values are used to assign the relative cortical depth of each cell in the section. We evaluate the performance of

Spateo’s and Belayer’s digitization by assessing the laminar distribution of layer specific excitatory neuron subtypes. Cell type visu-

alization was optimized using Spaco.162,163

Scripts for the benchmarks above can be found in the data and code availability section.

Cell-cell interaction analysis benchmarking

Processing of the MERFISH mouse dataset. For the following described benchmark, we used selected FOVs from an atlas of the

adult mouse brain,55 and the native cell type annotations from this dataset.

NCEM benchmark

For benchmarking with NCEM,29 we selected one or two marker genes for each of the ‘‘layers’’ of the brain: L2/3, L4/5, L5, L5/6 and

L6 to serve as target genes. We compared NCEM to Spateo’s niche model (see the ‘‘niche model’’ subsection of ‘‘predictor matrix

setup’’ under ‘‘spatially-aware modeling of networks of CCI in 3D spatial transcriptomics’’ for details). For NCEM, 150 was used for

the distance parameter, which was the same value used as Spateo’s bound to define the niche. For each target gene, we compared

the observed expression vector for each target gene to the reconstruction from the model output using the coefficient of determina-

tion (R2). To generate confidence intervals for this calculation, we performed 1000 iterations of bootstrap resampling, each containing

200 cells, and computed the R2 value for each sample. Using the overall R2 and the confidence interval, we used a Fisher Z-test to

determine whether the result for Spateo was significantly higher than the result for NCEM.

Processing of theCosMx cancer dataset. For the following described benchmarks, we used a lung cancer sample profiled byNano-

string’s CosMx, found from the company’s website and reported in an article in Nature Biotechnology44: https://nanostring.com/

products/cosmx-spatial-molecular-imager/ffpe-dataset/. This dataset is pre-annotated, however we used inferCNV164 to identify

and annotate cancer cells (previously largely labeled ‘‘Basal’’).

COMMOT benchmark. For benchmarking with COMMOT,45 we used its ligand:receptor (L:R) mapping to regress on gene

expression. From the complete set of ligands included in COMMOT’s L:R database, we subset to those found to be expressed in

at least 5% of cells in the CosMx lung sample. We similarly subset the receptors in this way. We subset L:R pairs to those in

which either of the ligand or receptor in the pair could be found in one of our filtered subsets. We constructed separate L:R arrays

for secreted signaling and membrane-bound signaling. We used 300 as the distance unit threshold for secreted signals and for

extracellular matrix-mediated signals. This is also the upper bandwidth for Spateo modeling (see ‘‘spatially-weighted modeling for

characterization of spatial specificity of signaling effects’’ for description of the bandwidth parameter), computed by finding the

average distance for 70 nearest neighbors (from a similar calculation as is detailed in ‘‘spatially-weighted modeling for

characterization of spatial specificity of signaling effects’’, but for a 2D scenario rather than 3D). For membrane-bound signaling,

we used 100 as the distance threshold, also the lower bandwidth for Spateo modeling. To identify the target genes to model, we

computed Moran’s I for each gene of the CosMx lung sample, filtering to those with statistically significant Moran’s I > 0.25. For

each target, we fit a spatially-weighted Poisson GLM and Poisson generalized linear model (GLM) using the COMMOT L:R array

and compared the observed expression vector for each target gene to the reconstruction from the model output using the

Pearson correlation and Spearman correlation. Comparing these correlations between observations and model predictions

across the two models established a sense of what the spatial weighting added to the general predictive ability.

Instead of optimal transport, Spateo uses spatial weights to aggregate ligand expression in the local neighborhood of each cell

(See more details in the ‘‘predictor matrix setup’’ section) to model ligand-receptor interactions. To evaluate the similarity between

COMMOT’s and Spateo’s L:R mapping, we filtered both arrays to L:R pairs shared by both, and computed a Jaccard index. More

specifically, we created two vectors, one for the COMMOT array and one for Spateo’s array. For each cell, we checked for zero or

nonzero in each of the COMMOT and Spateo arrays, adding a 0 or 1 to the appropriate vector, respectively. We calculated the inter-

section-over-union for these vectors. We additionally counted the total number of nonzero L:R features for each cell and computed

correlation coefficients.

To evaluate model coefficients, we compared the relative magnitude for ‘‘similar’’ L:R interactions and the quantitative similarity

from the L:R mapping array. We define similar L:R interactions on the basis of biological similarity, for example, belonging to the
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same family of receptors, e.g. integrins, Frizzled receptors, etc. For the similarity comparison, we computed pairwise Pearson cor-

relations between all pairs of columns from the L:R mapping array. Biologically similar L:R interactions with highly correlated (>0.7)

mappings were expected to return similarly-sized coefficients.

CellOracle benchmark. We compared the ability of CellOracle’s gene regulatory network (GRN) inference models to Spateo’s

downstream transcription factor (TF)-target model. To identify the target genes to model, we computed Moran’s I for each gene

of the CosMx lung sample, filtering to those with statistically significant Moran’s I > 0.25 (these targets are shared with the

COMMOT benchmark). Although we cannot measure whether a positive predicted coefficient is correct without external ground

truth data that cannot currently be measured with spatial transcriptomics, we can evaluate this prerequisite: to constitute a true

regulatory relationship, genes encoding both TF and target must be present in the same cell. For a given cell, if a given TF was

truly to regulate a given target gene, a positive coefficient should not be assigned unless there is sufficient evidence of their

coexistence (in this case, by the presence of TF and target transcripts). Thus, we use co-expression of TF-target pairs in cells

with nonzero correlation coefficients as ‘‘pseudo-true positives’’. Similarly, for cells with zero coefficients, absence of co-

expression of TF and target is a ‘‘pseudo-true negative’’. For cells with nonzero correlation coefficients, absence of co-

expression is a ‘‘pseudo-false positive’’. For cells with zero coefficients, co-expression is a ‘‘pseudo-false negative’’. We note,

however, in this specific case, co-expression can occur without a regulatory relationship. We assume that since Spateo’s model

filters to TFs with prior evidence of binding to particular targets (from scATAC-seq or footprinting,137,138 see ‘‘structure of prior

knowledge files of intercellular and intracellular interactions’’), for each target, generally all TFs remaining are capable of

regulating target expression and that each pseudo-false negative is valid. From these metrics, we calculated true positive rate/

TPR, true negative rate/TNR, false positive rate/FPR, false negative rate/FNR, and precision for both the CellOracle and Spateo

models.

Processing of the OpenST mouse head dataset and Slide-Tags human tonsil dataset. For the COMMOT benchmark, we also used

two additional datasets and the native cell type annotations from each: a section of the head of a mouse embryo at E13 measured

using OpenST,38 and a slice of the human tonsil profiled using Slide-Tags.165 For the mouse data, we used 200 as a distance unit

threshold for secreted signaling, and for the tonsil data we used 156.

Analysis of Central Nervous System of Stereo-seq mouse embryo data
Digitization of Zona Limitans Intrathalamica (ZLI) and vicinity

For the ZLI analysis, we defined two subsets, the dicephalic ring or the ZLI flanking region, each shown in Figure 6A. To identify the

ZLI, we visualized the expression pattern of themarkerShh in this region, andmanually assigned a ZLI label to all cells expressingShh

within the dorsal-ventral band extending from the floor plate.

We considered the ring structure formed by the region of the neural tube the ZLI is part of, namely the diencephalic ring. To extract

this ring, according to the known localization of ZLI, we first aimed to extract the neural tube cells near the diencephalon.We gathered

the cells within a maximum of 50 distance units from the inner surface as the diencephalic neural tube as shown in the top part of

Figure 6A. Then we applied digitization on the extracted neural tube, and delineated the diencephalic ring using a cutoff where digi-

tized potential is between 40 and 65. After the acquisition of this diencephalic ring, we performed digitization along the dorsal ventral

axis (Figure 6B). In the digitization procedure, the initial potential field wasmanually defined by selecting a bunch of floor plate cells as

ventral polar and some roof plate cells as dorsal polar. We solved the potential field on the spatial neighbor network of the dience-

phalic ring cells, and used the smoothed potential as the relative D-V coordinate for further analysis.

To focus on this structure and its immediate surroundings or the ZLI flanking region, we selected cells separated from the cells of

the ZLI by less than 100 distance units along the x-axis, 50 units along the z-axis or 25 units along the y-axis (arbitrary cutoffs, with x

cutoff being highest because of its alignment along the embryo’s anterior-posterior (A-P) axis). For digitization along the rostral

caudal axis, we first aimed to identify the inner surface of the neural tube to facilitate the definition of the R-C axis. To reduce compu-

tational cost, we manually applied a cutoff on spatial coordinates, using the ‘‘z_correction’’ field in the obsm slot, with x greater than

1300 and y between (300, 750), to roughly extract a subset near diencephalon. Then we constructed the point cloud model of the

subset using construct_pc of spateo.tdr module, followed by surface mesh reconstruction using construct_surface. The mesh

surface was then clipped by intersecting with a manually defined ellipsoid (created using ParametricEllipsoid of pyvista package)

to delineate the inner surface of the neural tube. Then we extracted the surface mesh grid network using mesh_model.faces and

mesh_model.points from pyvista. Wemanually defined the initial potential field, where a bunch of cells on the rostral polar were initial-

ized with minimal potential 0 and the caudal polar with maximal potential 100. Then the potential field was solved iteratively using the

heat equation. Each cell in the ZLI subset was assigned with the smoothed potential of the nearest vertex on themesh grid, as shown

in Figure 6C. This potential was used as the relative coordinate of the cell on the rostral caudal axis of the diencephalic tube for further

analysis.

Digitization of the spinal cord

The spinal cord cells were first extracted based on the transferred annotation. Subsequently, outliers were manually filtered using 3D

point clouds where the 3D coordinates of all cells underwent clustering via DBSCAN (sklearn) with parameters set to eps=70 and

min_samples=10000. Dorsoventral digitization shown in Figure S6F was performed on the 2D representation of these spinal cord

cells, which was obtained by only using the X and Y coordinate, along themedial lateral axis. As for Figure S6I, we performed a trans-

verse projection to construct the pseudo cross plane. To expedite computation, a down-sampled subset of 60,000 cells (out of
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683,920 cells) was utilized to construct the principal curve of the spinal cord using spateo.tdr.widgets.changes.Principal_Curve. The

points representing spinal cord cells were then mapped to the principal curve using KDTree (scipy) to obtain new Z coordinates,

defined by the principal curve. Similarly, for the notochord, the annotated cells (52078 cells, no downsampling required) were

used to construct its principal curve using the samemethod. Subsequently, the point of interest along the principal curve of the spinal

cord will be connected to the corresponding point of the principal curve of the notochord with the same Z coordinate to derive the

vector A, indicating the direction along the dorsoventral axis on the transverse plane. For each cell in the spinal cord with the same Z

coordinate, a vector B was created by connecting its original point to the corresponding point on the principal curve of the spinal

cord. By utilizing vector A and vector B, the radians of cells and the dorsoventral axis were calculated via cross product operations.

Leveraging the radians and the length of each cell away from the corresponding point on the principal curve of the spinal cord, all

spinal cord cells could be projected onto an overall transverse plane.

Identification of axis variable genes and gene clusters

After digitization, we considered the gene expression patterns along those axes. We first grouped the cells into 100 bins according to

their digitized coordinates, and constructed a vector of 100 elements for each gene by calculating its mean expression in each bin.

We then identified genes whose expression is significantly related to digitized axis coordinates, using the generalized additive model

implemented in the dynamo.tl.glm_degs function of the dynamo package. We kept the genes with a p-value less than 0.01 as R-C or

D-V variable genes. Then, we grouped those axis variable genes into gene clusters using hierarchical clustering. To avoid interference

from sparsely expressed genes, the gene vectors were smoothed using a Gaussian kernel of 3 and scaled using min-max normal-

ization before clustering.

Cell-cell interaction modeling and parameters for the ZLI and vicinity

To choose target genes for cell-cell interaction (CCI) modeling of the ZLI region subset (Figure 6A), we subset the list of all genes

found to be significantly variable along the R-C axis (see ‘‘identification of axis variable genes and gene clusters’’ for details of

how this was done) (Table S3). We took the set of these genes that were also identified as cell type markers. To do so, we computed

the mean expression level for each gene in each cell type and compared it to mean expression of all other cells of all other types,

keeping genes with fold changemean expression over others >2.5. To choose ligands, receptors and transcription factors (for down-

stream models) to include in modeling, we filtered all ligands, receptors, and transcription factors in our database (see ‘‘structure of

prior knowledge files of intercellular and intracellular interactions’’ section of the main method details) to those expressed in at least

1000 cells. For each target gene, we fit Poisson ligand models (see ‘‘ligand model’’ subsection of ‘‘spatially-aware modeling of cell-

cell interaction in 3D spatial transcriptomics’’), with a distance of 6.6 units used for computations related to membrane-bound

signaling and 16.5 units for computations related to secreted signaling, determined by the methodology detailed in the section

‘‘Spatially-weighted modeling for characterization of spatial specificity of signaling effects’’. For the minimum and maximum band-

widths for spatially-weighted regression, we used 1.5 times the membrane-bound and secreted distances, or 10.0 and 25.0 units,

respectively. For weighted regression for intracellular models (see ‘‘weighted modeling for downstream (transcription factor-gene)

model’’), we used default settings. Notably, this sets the lower bandwidth (for intracellular models, a fixed number of nearest neighbor

cells in gene expression space) to be 0.2% of the total number of cells (about 300 cells for the ZLI region) and the upper bandwidth to

be 0.5% of the total number of cells (about 700 cells for the ZLI region).

For the diencephalic ring (Figure 6C), genes found to be significantly variable along the D-V axis were used as targets (Table S4),

with the same parameters as described for the ZLI otherwise.

Construction of intercellular & intracellular signaling network

To create the combined intercellular & intracellular network (Figures 6F and 6G), we first selected morphogens of interest in the ZLI

region based on their previously established roles in neurogenesis. These included Wnt family ligands,166 Bmp family ligands,167

Shh,166 Fgf8166 and Gdf11.168 We also included ephrins due to their pronounced expression in the region. For each target gene

of the ZLI region CCI model (see ‘‘cell-cell interaction modeling and parameters for the ZLI and vicinity’’), we computed the average

predicted effect size for each of our selected ligands over all cells expressing the target gene. For each ligand, we ranked the top

target genes based on average predicted effect size. For display in the network, we selected genes based on specificity for the ligand

(i.e. the gene ranked among the top targets only for that ligand or only for ligands with similar spatial patterns) and/or biological sig-

nificance. For example, Dcx and Thsd7a are markers of neurons undergoing migration and dendritic growth.

Cell-cell interaction modeling and parameters for the MHB and vicinity

To choose target genes for cell-cell interaction modeling of the MHB region subset (Figure S3A), we selected genes found to be signif-

icantly variable along the R-C axis (see ‘‘identification of axis variable genes and gene clusters’’ for details of how this was done)

(Table S5). For selection of ligands, receptors and transcription factors, we followed the same procedure as for the ZLI. Similarly for

theZLI, for each targetgene,wefitPoisson ligandmodelswithadistanceof6.5units used forcomputations related tomembrane-bound

signaling and 16.0 units for computations related to secreted signaling. The minimum and maximum bandwidths (see ‘‘spatially-

weightedmodeling for characterization of spatial specificity of signaling effects’’) were 9.74 and 24.0 units, respectively, again obtained

bymultiplying themembrane-bound and secreted signaling distances by 1.5. For intracellularmodels, the lower and upper bandwidths

were set to 250 and 600 cells, respectively (see ‘‘weighted modeling for downstream (transcription factor-gene) model’’).

Cell-cell interaction modeling and parameters for the spinal cord

To choose target genes, ligands, receptors and set model parameters, we followed a similar procedure for the analyses of ZLI and

MHB. For target genes, we selected genes found to be significantly variable along the D-V axis (Table S6).
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Spateo Alignment Benchmark
Benchmark Datasets

MERFISH dataset from mouse hemibrain.37 The MERFISH dataset includes 129 slices at 100 -mm intervals with 9.3 million cells

and measures about 1,100 genes. These 9.3 million cells delineate all 11 major brain regions: olfactory areas, isocortex (CTX), hip-

pocampal formation, cortical subplate, striatum, pallidum, thalamus, hypothalamus, midbrain, hindbrain and cerebellum. The data-

set further registered the cell atlas to Allen mouse brain common coordinate frame v3 (CCF v3) using both DAPI images and the cell

type based landmarks. Therefore in the evaluation process, we use the CCF coordinate as the ground-truth and evaluate the perfor-

mance of various alignment algorithms.

STARMAP Plus dataset from mouse central nervous system.116 The STARMap Plus dataset contains nineteen 10-mm-thick

CNS tissue slices harvested from three mice, where sixteen slices are from the coronal brain (Well) and three slices are from the

sagittal brain (Sagittal). After data processing with ClusterMap workflow, the dataset includes 250 million RNA reads and 1.1 million

cells. According to the STARMap Plus protocol, each slice has a three dimensional volume. This enables us to generate pseudo-sli-

ces with different spatial distributions in the same coordinate space.

BAR-Seq dataset frommouse forebrain hemisphere.49 The BAR-Seq dataset builds a brain-wide high-resolution map contain-

ing 1.2million cells, which are covered by 40 hemibrain coronal slices. 107 cell typemarker genes’ expression is interrogated byBAR-

seq.More importantly, they have registered BAR-seq data to the Allenmouse brain common coordinate frame v3 (CCF v3) bymanual

manipulation. Thus it can be used to directly evaluate the performance of various alignment algorithms.

OpenST dataset of the human metastatic lymph node.38 This OpenST dataset generates 10 mm sections spanning a tissue

depth of 350 mm. After the experiment, they obtained about 1 million cells across 19 sections, with median capture of genes

(313-624) and UMIs (438-1, 008) per segmented cell.

Stereo-seq from macaque cortex.38,43 The Stereo-seq dataset includes a total of 119 sections at 500-mm spacing covering the

entire macaque cortex with more than 30 million cells. Each slice contains 226, 310 segmented cortical cells on average with 458

genes and 819 UMIs per segmented cell. We choose this dataset to test the scalability of different methods thanks to the large scale

of this Stereo-seq dataset, see the scalability test section below.

Benchmark Tasks

We mainly focus our testing on the following 7 tasks: (1) Non-rigid alignment; (2) Partial overlapping alignment; (3) multi-slice refine-

ment; (4) Mesh correction; (5) Robustness test; (6) Scalability test; (7) Real 3D ST reconstruction from consecutive slices. These test

tasks cover the existing challenges of ST alignment and 3D reconstruction. In addition, we also include parameter studies to inves-

tigate the sensitivity of the method to the parameters and the setting intervals.

Non-rigid alignment

Simulated data generation. We first obtain 4 pseudo-slices for each STARMap Plus slice, denoted as slice A, B, C, and D

respectively. Then the TPS algorithm from thin-plate-spline package (1.1.0) followed by a random rotation and translation are

applied to the spatial coordinate of each pseudo-slice to obtain distorted slice A�;B�;C�, and D� respectively. Note that we only

run the simulation once and save the results for each method, in other words, the input of each method is the same without

randomization. TPS transformation requires a set of corresponding source and target points. Specifically, we first generate N3 N

grids based on the X-Y coordinates of the ST data, and we set the center of these grids as the source points. In this paper, we

set the grid number N to 2. The target points are obtained by adding random Gaussian noise to the source points. By controlling

the variance of the Gaussian noise, we can thus control the TPS distortion level. The variance of the Gaussian noise is set to

ðHgrid +WgridÞ,distort level=100, where Hgrid and Wgrid are the height and width of the grid respectively, the distort level is set by

the user. Note that we add the four corners of the ST data to the source and target points as well, without adding Gaussian noise

to the target points, in order to prevent the TPS from producing extremely large distortions. After constructing the source and

target points, a TPS transformation is fitted by
and consequently performs distortion by
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where alpha is the regularization parameter and is set to 0.1 for the benchmark, spatial is the x-y coordinate of the ST data.

Metrics. Whenwe align Slice A* to the coordinate system of Slice B, wewish to recover the shape of Slice B, which is similar to Slice

A. Thus, ideally, we want T (Slice A*|Slice B) to be as similar as possible to Slice A, where the one-to-one correspondence between

Slice A* and Slice A is known. Thus we can directly measure the pairwisemean average error (pairwiseMAE) between T (Slice A*|Slice

B) and Slice A to indicate the performance of non-rigid alignment, i.e.,

pairwise MAE =
1

N

X
sA
i
˛SA

��xA
i � T

�
xA
i

� ��
2
;

where T is the transformation provided by different alignment algorithms. Lower pairwiseMAE indicates better capability to handle

non-rigid deformation and vice versa.

In the benchmark, we first fix the distort level to 5 and evaluate the performance of each method on all Sagittal and Well slices, as

shown in the barplots in the Figure S4C iii). Next, in the Figure S4C iv), we plot the lineplot where the distort level is changed from 0 to

10 on well #10 slice with 10 repeated runs.

Partial overlapping alignment

Simulated data generation. We first split the STARMap Plus slice into 16 pseudo-slices. Next, we simply crop slices based only on

the x or y axis with a hard threshold to generate partially overlapping slices, where the overlap ratio is fully controlled by the threshold,

as shown in Figure S4A iii). Taking the y-axis as an example, given the Slice A, Slice B and overlap ratio, we can obtain the cropped

slices as follows:
After cropping, we then apply a random rotation and translation on the cropped slice A, denoted as sliceA_crop*.

Metrics. When we align sliceA_crop* to the coordinate system of sliceB_crop, the T (sliceA_crop*|sliceB_crop) should also

align sliceA as sliceA shares the same coordinate system of sliceB_crop. As the one-to-one correspondence between T (sliceA_-

crop*|sliceB_crop) and sliceA is given, we measure the pairwise MAE described above between them.

In this benchmark, we vary the overlap ratio from 0.3 to 1with an interval 0.1. To avoid having high similarity between slice pairs, we

choose slices with an interval of 8 to form slice pairs. The performance of each method on Sagittal #2 and Well #8 is reported in Fig-

ure S4D iii).

Multi-slice refinement

Simulated data generation. For multi-slice refinement benchmark in Figure S4E, we first split the STARMap Plus slice into 10

pseudo-slices and employ manual guided strategy to crop slices, i.e., manual interactive cropping, which is a function integrated

in the Spateo: spateo.tdr.interactive_rectangle_clip. This cropping strategy generates more complex and difficult situations, e.g.,

an extremely low overlap ratio between neighboring slices. It is almost impossible to obtain a satisfactory 3D reconstruction

result if only neighboring slices are considered, e.g, sequential alignment.

Metrics. multi-slice refinement focuses on 3D reconstruction of multiple ST slices, so we should evaluate the entire 3D reconstruc-

tion result rather than pairwise alignment. Specifically, we first find the optimal rigid transformation that best aligns the reconstructed

3D structure with the ground truth in the x-y axis using Procrustes Analysis:

bR;bt = arg min
R;t

XK
k = 1

XNk

n = 1

kxk
nR

u+t � T k

�
xk�
n

�k2;
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where K is the slice number, Nk is the cells/spots number in slice
 k, T k is the transformation for slice k by the alignment algorithm.

After that, we can calculate the global MAE, which allows us to assess the global consistency of the 3D reconstruction across all

slices:

global MAE =
1PK

k = 1 N
k

XK
k = 1

XNk

n = 1

kxk
n
bRu+bt � T k

�
xk�
n

�k
2
:

In this benchmark, we combine themulti-slice refinement with eachmethod, i.e., PASTE, PASTE2,Moscot, SLAT, SPACEL, as well

as Spateo (pairwise mode) and evaluate the performance on all Sagittal and Well slices. The visualization as well as the statistical

results are shown in the left and right of Figure S4D, respectively.

Mesh correction

Data preparation. As previously mentioned, MERFISH and BARSeq dataset are registered to the Allen CCF v3 by manual

manipulation, providing both a mesh and the ground-truth. Therefore, in the mesh correction benchmark, we select the MERFISH

and BARSeq dataset for benchmarking. For each slice, we add random rotation and translation on the ground-truth spatial

coordinate.

Metrics. Because the mesh correction step is also manipulating the entire 3D reconstruction results, we use the same metric

described in multi-slice refinement, i.e., global MAE.

In this benchmark, we combine the mesh correction with each method, i.e., PASTE, PASTE2, Moscot, SLAT, SPACEL, as well as

Spateo (aftermulti-slice refinement), and evaluate the performance on theMERFISH andBARSeq dataset. The visualization of the 3D

reconstruction of MERFISH dataset before and after mesh correction based on Spateo’s results is demonstrated in Figure 4D left.

The statistical results are reported in Figure 4D right.

Robustness test

Data preparation. Our Stereo-seq from mouse embryos contains more than 80 slices at each time point and has a large number of

spots, so it is well suited for robustness tests with downsampling with respect to the number of slices or the number of spots. For the

slices downsampling, we sample at a constant interval, e.g., preserve interval 5means the sampled sliceswere spaced 5 slices apart.

For the spots downsampling, we randomly downsample a fraction of single cells.

Metrics. We test robustness by comparing the results of Spateo’s reconstruction after downsampling to those reconstructed on the

full mouse embryo data. For the slices and spots downsampling, we directly measure the MAE and Pearson correlation between the

full data and the downsampled one.

Scalability test

Data preparation. The Stereo-Seq dataset frommacaque cortex contains more than 200k cells per slice, which is a very large scale

of data. We choose slice #85 and #86 for the benchmark, which contain 528, 264 and 492, 701 cells respectively. We randomly

downsampled the cells in the slices to generate subset datasets with a range of cell numbers as
Metrics. We record the time and CPU/GPU memory usage for each downsampling configuration for each method. For those

methods that use GPU acceleration, we record the peak GPU memory usage, and for those that use CPU, we record the peak

CPU memory usage.

3D reconstruction of real ST data from consecutive slices

Data preparation:. We use the MERFISH dataset from mouse hemibrain, BAR-Seq dataset from mouse forebrain hemisphere,

OpenST dataset from human metastatic lymph node, Stereo-seq from macaque cortex, as well as our 3D spatial transcriptomics

Stereo-seq profiling from mouse embryos at E9.5 and E11.5 for this benchmark. To introduce perturbation, we apply random

rotation and translation to each slice of each dataset.

Metrics. For those datasets with ground-truth, i.e., MERFISH and BARSeq datasets have already been registered to Allen CCF v3,

we use pairwise MAE as the metric. For those datasets without ground-truth, i.e., OpenST, Stereo-seq, and our mouse embryos

datasets, only non-referenced metrics can be used. Previous methods mainly focus on measuring the consistency of the

mapping labels, while ignoring the spatial consistency of the mapping. To this end, we design a new metric called Contextual

Label Consistency (CLC) score that considers both label and spatial consistency of the mapping, which is defined as

CLCðMÞ =
1

N

XN
i = 1

 
Iðl1ðiÞ = l2ði0ÞÞ , 1

jN ij
X
j˛N i

dði0; j0Þ
!
;
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where M denotes the mapping matrix, N i is the spatial neighborhood of spot/cell i, which is calculated by K-nearest neighbors.

Considering the effect of downsampling on neighborhood scales, K is set to 2.5% of the average cell number of the slice pair.

The prime on an index indicates the most probable corresponding spot/cell in the second sample, e.g., for spot/cell I in the first sam-

ple, i0 = arg max
i

Mii0 and dði0; j0Þ = 1 if j0 ˛N
0
i otherwise 0. The results are reported in Figure 3A–3E.

Parameters Studies

Data preparation. We use the STARMap Plus Sagittal #3 slice and generate two pseudo-slices for the parameters studies.

Subsequently, ratio cropping was applied to two pseudo slices with overlap ratio range from 0.5 to 1. Random rotation and

translation are added.

Metrics: We follow the metric used in partial overlapping alignment benchmarks and use the pairwise MAE.

In this benchmark, we investigated the impact of parameters l, K, Ba, Bb, and k on performance in different scenarios, i.e., with

different overlap ratios. We also include other methods for comparison.

Benchmark Methods

Spateo is compared with PASTE, PASTE2, Moscot, SLAT, STAlign, and SPACEL, which are recently published ST alignment

methods. We run these methods in Python (3.8.16) by their official release Python package:
Method PASTE PASTE2 Moscot SLAT STAlign SPACEL Spateo

Package paste-bio 1.4.0 commit 517d6584 moscot, 0.3.4.dev3+

gf71f976

scSLAT, 0.2.2 STalign, 1.0 SPACEL,

1.1.8

spateo-release,

1.1.0
For GPU hardware acceleration, we use a NVIDIA A100 with 40 GB memory and CUDA 12.5 driver. PASTE, SLAT, STAlign,

and Spateo are equipped with torch 2.0.0, and Moscot is equipped with jax 0.4.13 and ott-jax 0.4.4. For PASTE2, the authors

have not yet provided a GPU version so it is run on CPU. For SPACEL, the module that performs alignment is called Scube and

doesn’t support the GPU acceleration. For each method, we used the default parameters and settings in their papers or pack-

ages. Specifically, the trade-off parameter a is set to 0.1 for PASTE and PASTE2 and 0.5 for Moscot. Note that due to memory

and runtime limitations, to run the OT-based methods as well as SPACEL, we have to downsample the number of cells/spots in

each slice in order to successfully run these methods. Specifically, 10k samples for PASTE, 5k samples for PASTE2, 20k sam-

ples for Moscot and SLAT and SPACEL are used. PASTE2, as an improved version of PASTE, claims to be able to handle partial

overlaps. However, PASTE2 requires the overlap ratio as the input, which is not available in advance in real scenarios. To this

end, PASTE2 conducts a brute force search, trying a series of overlapping ratios and choosing the setting that works best ac-

cording to some metrics. We found this pipeline to be very time-consuming, making PASTE2 to spend hours processing to only

align a pair of slices with a few thousands cells/spots. Therefore, we fix the overlap ratio of PASTE2 to 0.99 when there is no

partial overlap involved in the benchmark, such as nonrigid alignment benchmark and runtime and scalability benchmark.

When performing the partial overlap benchmark, its brute force search strategy is enabled. We denote the rigid and non-rigid

modes of Moscot as ‘‘Moscot-R’’ and ‘‘Moscot-N’’ respectively. SLAT requires a rough pre-alignment via expert knowledge

or ICP algorithm. However, manual manipulation using expert knowledge disobeys the original purpose of automatically aligning

ST and also introduces bias. For a fair comparison, we consider the optimal rigid transformation derived from the ground-truth

one-to-one correspondence (if available) as expert knowledge and use it as the pre-alignment, denoted as ‘‘SLAT-GT’’. When no

GT is available, we use the Iterative Closest Point or ICP algorithm as the pre-alignment, denoted as ‘‘SLAT’’. Lastly, in the

nonrigid benchmark, we additionally include the optimal rigid transformation denoted as ‘‘Optimal R’’ that derived from the

GT one-to-one correspondence as a reference.

QUANTIFICATION AND STATISTICAL ANALYSIS

All statistical analyses were performed using Python scripts, with specific test employed as indicated.

ADDITIONAL RESOURCES

We developed Spateo-viewer, the ‘‘Google Earth’’ browser for 3D spatial transcriptomics. Spateo-viewer is deployed at http://

viewer.spateo.aristoteleo.com/.
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Figure S1. Basic statistics of the whole mouse and Drosophila embryo 3D spatial transcriptomics cell atlases used in this study and their

comparison with those from Zhenyu et al. and Kumar et al., related to Figure 1
(A) Summary and visualizations of existing 3D spatial transcriptomics platforms and datasets. Left column: the existing 3D spatial transcriptomics platforms and

datasets used in this study. Three columns on the right: from left to right, 3D visualizations of human embryo of gastrulation profiled by Stereo-seq (CS8) and

mouse embryos by Slide-seq V2 (E8.5, E9.0), reconstructed with Spateo (see 3D reconstruction results from the original studies in Figure S3). Color of spots or

cells indicates different cell types and uses the same colormap used by Zhenyu et al.20 or Kumar et al.21

(B) Brief description of the whole mouse and Drosophila embryo used in this study. Left: schematic describing the embryonic sectioning of both the mouse and

Drosophila embryo at E9.5 and E11.5, and S11 and S13 stages, respectively. For full details of the mouse embryo dataset, see Cheng et al..23 Reconstructed 3D

time-resolved cell atlas of mouse (middle) and Drosophila embryos (right).

(C) Bar plots of the tissue section sampling interval, tissue section number, cell number, and number of genes detected per cell (in log2 space) for each time point/

dataset, highlighting the significantly improved scale from the data used in this study. The Kumar et al. study21 also includes a partial profiling of E9.5 mouse

embryo, which is not shown here.

(D) Comparison for mouse E9.5 whole-embryo Stereo-seq datasets with the scRNA-seq reference. (i) Heatmap of the fraction of matched markers between the

scRNA-seq time-lapse reference from Qiu et al.41,49 and the whole 3D mouse embryo dataset from E9.5 used in this study. (ii) Comparison of the fraction of 10

major cell types between scRNA-seq reference and the Stereo-seq dataset used in this study. (iii) The violin plot of the distribution of the average gene number

from cells of each major cell type between the scRNA-seq reference and the Stereo-seq dataset used in this study.

(E) Same as in (D) but for E11.5 time point.

(F) 3D visualization of the cardiomyocytes, hepatocytes in E9.5 embryo dataset, intermediate neuronal progenitors and ependymal cells in E11.5 dataset (left),

and the corresponding marker gene expressions (right).
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Figure S2. Spatial distributions and relative fractions of different cell types in the 3D whole mouse embryo datasets, related to Figure 1

(A) 3D spatial distribution of all identified cell types at E9.5, grouped into five major cell clusters; relevant groups are organized into a subpanel. Fraction of each

cell type within each group is shown as a bar plot.

(B) Same as in (A) but for E11.5 stage and grouped into six major cell clusters.
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Figure S3. Comparison of the 3D reconstruction of mouse and human embryos from the original studies and Spateo, related to Figure 2

(A) 3D reconstruction of human gastrulating embryo Stereo-seq data with Spateo and PASTE used in the original study.20 Two selected zoom-in regions are used

to show more consistent spatial cell-type distribution results for Spateo’s approach. The left column shows the results from the PASTE approach used in the

original study and the right column from the Spateo approach.

(B) 3D reconstruction of Slide-seq data of mouse embryos with Spateo and sc3D.21 The 3D Slide-seq spatial transcriptome data of mouse embryos are used to

reconstruct the E8.5 embryo #1 (the first row), E8.5 embryo #2 (the second row), and E9.0 embryo (the third row). Several tissue structures are also presented in

the fourth row. The left column shows the results from the sc3D approach,21 reported in the original study, and the right column from the Spateo approach.
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Figure S4. Extensive benchmarks on simulated and real data demonstrate Spateo’s superiority and robustness in 3D alignment of spatial

transcriptomics, related to Figure 3

(A) Simulated data generation process based on STARMap Plus116 dataset. (i) Each STARMap Plus slice in this dataset has a 3D volume, thus allowing us to

obtain several pseudo-slices with ground-truth aligned coordinates by cutting along the z axis. The left andmiddle subpanels show the data and plane of pseudo-

slices under different views. The right subpanel visualizes the artificially created pseudo-slices. (ii) The simulated non-rigid distortion is performed by the thin-

plate-spline algorithm. (iii) Ratio cropping strategy to generate partially overlapped slices. For each alignment pair, we crop the slices horizontally or vertically

such that the overlapping ratio between slice pairs of alignment will be fully controlled. In this example, the overlap ratio is set to be 50%. (iv) Manual cropping

strategy. We manually crop the slices to generate more difficult scenarios for multi-slice refinement benchmark (STAR Methods).

(B) Non-rigid alignment benchmark results. The visual examples of non-rigid alignment on sagittal #3 pseudo-slices are shown in the left bottom. For each group

of the result, we visualize the overlay of two aligned slices processed by different methods. In the second row, the red points indicate reference slice and blue

points indicate move slice, where we can evaluate the alignment quality of the slice boundary. In the third row, we plot the spatial distribution of cell-type clusters,

where we can assess the alignment quality within the slices. The fourth row presents two zoomed-in regions for all methods from the third row. Statistical

benchmark in the upper right with pairwise mean absolute error or pairwise MAE, quantifying the absolute alignment error, when the distort level is fixed to 5,

where 95%confidence interval is included for each line (STARMethods). The bar plots in left andmiddle report the results on the sagittal dataset andwell dataset,

respectively, where 95% confidence interval lines are included for each bar. Note that the gray dotted line indicates the ‘‘Optimal R’’ (STAR Methods) calculated

based on ground-truth correspondences, using the rigid transformation.

(C) Partial alignment benchmark results. The visual example of partial alignment on sagittal #3 pseudo-slices are presented on the left. Statistical benchmark with

pairwise mean absolute error or pairwise MAE is shown on the right, on sagittal and well datasets as we change the overlapping ratio, where 95% confidence

interval is included for each line.

(D) Multi-slice refinement benchmark results. Left, the visual examples of multi-slice alignment results. Right, statistical benchmark on sagittal and well datasets.

Note that the bar plot on the right includes both the result with multi-slice refinement and that without. Error bars (95% confidence interval) are included for both

results, while the error bar for the one with multi-slice refinement is moved upward to avoid overlapping with the one without.

(E) Robustness evaluation of Spateo under different sample overlapping ratio and parameter choices. Ba/Bbmeans Ba andBb are set to the same value. Ba/Bb�1

means Ba and Bb�1 are set to the same value. Other methods’ performances are also reported in the right bottom. Compared with alternative tools, Spateo

outperforms other methods while it is also considerably more robust to different parameters setting and different overlap ratios.
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Figure S5. Assessment and validation of Spateo digitization and cell-cell interaction modeling across various biological systems, related to

Figure 4

(A) Identified spatial domains of a Visium dataset of a mouse brain section13 (left), with rostral-caudal digitization of the extracted cortex area shown in the right.

(B) The density plot of five genes along the R-C distribution, detected to have either high-to-low or low-to-high expression gradient along the rostral-caudal axis.

The transparent shade indicates the 95% confidence interval, as is the case for all other relevant figure panels throughout this paper.

(C) Digitization of the cytoplasm area from aMERFISHU2-OS cell line dataset54 and the detected top 3 genes,NOTCH2, FBN2, and THBS1 (with red, orange, and

burgundy lines), which exhibit gradient expression (enrichment) from the nuclear boundary to cell membrane. Three genes with blue lines are randomly selected

as negative controls.

(D) Same as (C), but for digitization of the nuclear area. Red, orange, and burgundy lines are those genes—SRRM2, TNRC6A, andMALAT1—that exhibit gradient

expression from the center of the nucleus to the boundary.

(E) Spatial scatterplot of cells from the MERFISH dataset of a mouse cortex sample,55 colored by cell type.

(F) Layer digitization by Spateo. The continuous layer assignment shown on the left with the corresponding evenly grouped assignment shown on the right.

(G) Same as (I) but using Belayer.

(H) Density plot of different laminar-enriched cell types along the digitized axis. Line color indicates neuron subtypes (L2/3 IT: layer 2/S3 intratelencephalic

neurons, etc.), while line type indicates digitization methods (solid: Spateo digitization; dashed: Belayer digitization).

(legend continued on next page)
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(I) Violin plot of layer thickness (distances between perpendicular point pairs between layer boundaries) of digitized layers by Spateo and Belayer in four different

cases, including simulated half circle (Simu. 1, refers to Figure 4E), simulated trapezoid (Simu. 2, refers to Figure 4F), the MERFISH mouse cortex sample

(MERFISH, refers to Figure S5E), the Stereo-seq macaque cortex sample (Stereo, refers to Figure4G). Dash lines indicate quantiles of the distribution.

(J) Additional FOVs from the MERFISH mouse cortex sample,55 colored by cell type with optimized palette.162

(K) Bar plot comparing Spateo and NCEMmodel performance on select genes (denoted along the x axis) for FOVs 153 (left) and 162 (right), assessed by variance

explained (R2). 95% confidence interval line is included for each bar, and significance is indicated above each pair of bars. *adjusted p < 0.05, **adjusted

p < 0.005, ***adjusted p < 5e�4, ****adjusted p < 5e�5.

(L) Bar plots of the magnitude of Spateo predicted Wnt effects on target genes in the CosMx NSCLC dataset44 (see Figures 4H–4J; from left to right, KRT19 in

FOV 4, KRT19 in FOV 6, andMMP7 in FOV 28). Y axis: L:R interactions, x axis: magnitude of predicted effects. See STARMethods section COMMOT benchmark

for details.

(M) Similar to (L), but for the coefficients from the ‘‘COMMOT’’ model referenced in Figure 4I.

(N) Bar plots of Spearman correlations between observed and model-predicted gene expression, comparing Spateo’s spatially weighted model with a non-

weighted ‘‘global’’ Poisson generalized linear model that uses the COMMOT L:R array to predict expression in different FOVs of the CosMx NSCLC dataset (from

left to right, FOV 6, 28, and 30). See STAR Methods section COMMOT benchmark for details. 95% confidence interval lines are included for each bar, and

significance is indicated above each pair of bars. *adjusted p < 0.05, **adjusted p < 0.005, ***adjusted p < 5e�4, ****adjusted p < 5e�5.

(O) Spatial scatterplot of cells from the OpenST38 mouse head sample, colored by cell type.

(P) Pearson correlation comparison bar plot, similar to those described in (N), for select target genes in the mouse head. 95% confidence interval is included for

each bar, and significance is indicated above each pair of bars. *adjusted p < 0.05, **adjusted p < 0.005, ***adjusted p < 5e�4, ****adjusted p < 5e�5.

(Q) Spatial scatterplot of cells from the Slide-Tags human tonsil dataset,165 colored by cell type.

(R) Pearson correlation comparison bar plot, similar to those described in (M), for select target genes in the human tonsil. 95% confidence interval is included for

each bar, and significance is indicated above each pair of bars. *adjusted p < 0.05, **adjusted p < 0.005, ***adjusted p < 5e�4, ****adjusted p < 5e�5.
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Figure S6. Spateo characterizes spatially variable gene expression and cell-cell interactions in the midbrain-hindbrain boundary and spinal

cord, related to Figure 5

(A) Diagram of theMHB region, identifying enriched ligands and target genes affected bymany of these ligands in the midbrain (region I), hindbrain (region II), and

the boundary region (region III), based on the region specificity of the interaction (see B).

(B) Ligand-target gene combinations-effect scores in themidbrain, hindbrain, andMHB. Score derived from the proportion of target-expressing cells predicted to

be affected by a particular ligand.

(C) Effect score for selected known Ptn target genes, computed similarly as in (B).

(D) Spatial scatterplots of the MHB subset, colored by (left to right) expression of Cdh2, Tox, and Abcc4.

(E) Same as in the (D) but for the predicted effect of Cdh2 on Tox (left) and that of Cdh2 on Abcc4 (right).

(F) The digitized spinal cord, colored by the dorsal-ventral (D-V) digitization values.

(G) Heatmap of Lhx factors’ expression distribution along the D-V axis of the integrated 2D representation of the spinal cord (see STAR Methods).

(H) Spatial scatterplots of the spinal cord 2D projection, colored by expression of Gbx2 (left) and Dbx1 (right).

(I) Gbx2+ and Dbx1+ cells on the projected transverse plane of the spinal cord. Left: schematic demonstration of transverse plane integration (see STAR

Methods). The red line and the blue line indicate the principal curve of the spinal cord and notochord, respectively. The red dot illustrated a cell in the spinal cord.

While the arrows point to the cell vector representing the distance offset from the spinal cord principal curve, the curve indicates the radian between the cell vector

and the reference vector from the spinal cord and notochord, defining the relative angle of the cell. Right: spatial scatterplot of the spinal cord 2D projection,

colored by expression ofGbx2+ cells orDbx1+ cells. The density plot on two sides corresponds to the density ofGbx2+ andDbx1+ cells along either the left-right

or dorsal-ventral axes.

(J) Spatial scatterplots of the spinal cord 2D projection, colored by expression of Slit2.

(K) Bar plot showing the proportion of spinal cord interneurons expressing Slit2 and predicted to be affected by TFs (x axis).

(L) Similar to (K), but the y axis represents the proportions of cells with expression of specified target genes indicated from the x axis that are predicted to be

affected by Slit2 in spinal cord interneurons.
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Figure S7. Spateo characterizes the region-specific gene expression, 3D structure, and morphometric traits during heart organogenesis,

related to Figure 6

(A) Violin plot of the gene numbers, UMI counts, and percentages of mitochondria counts in five major structures of murine heart at E9.5 and E11.5, subsetted

from the 3D whole-embryo Stereo-seq dataset.

(B) Heatmap of heart structure-specific markers.

(C) 3D scatterplots of interpolated heart structure-specific markers. Outlines of the heart structures are shown.

(D) 3D visualization of virtual continuous slices of six evenly divided heart sections along the x axis. Only cells from each evenly divided section are shown.

Sections 1 and 6 are not visualized given their low cell numbers. Top: E9.5 heart; bottom: E11.5 heart.

(E) Jacobian analysis of the morphometric vector field of the heart. Top: cell migration streamline plots with streamlines colored with the values of six possible

Jacobian elements; bottom: the boxplots of the corresponding morphometric Jacobian quantities across five major structures.
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Figure S8. Spateo enables modeling and prediction of 3D morphometric properties, backbone-dependent expression patterns and
morphogenesis regulators, related to Figure 6

(A) Spateo reveals distinct morphogenesis modes. Left: the reconstructed 3D models of Drosophila at the S11 or S13 stage. Right: Spateo facilitates the

revelation of migration (CNS, amnioserosa, muscle), convergence (midgut), and expansion (hindgut, salivary gland) modes of Drosophila organs.

(B) 3D spatial morphometric similarities and changes of the embryo or across different organs. The top boxplot reveals the spatial similarity between the cor-

responding 3D structures across two time points. The bottom dot plots characterize the level of changes of different morphometric traits (length, width, height,

surface, and volume) of the embryo or different organs at stage S11, compared with stage S13.

(C) Spateo quantifies the backbone of the germband. Top: the spatial distribution of cells from different organs, indicated by different color, along the anterior-

posterior or A-P axis. Bottom: the principal curve (backbone) identified for the germband.

(D) Heatmap of significant A-P-axis-dependent genes. Example gene expression and the corresponding fitting curves along the A-P are shown on the left.

(E) Visualization of the head, thorax, and abdomen domains of germband identified by spatially constrained clustering.

(F) Average gene expression heatmap of the head, thorax, and abdomen-specific marker genes.

(legend continued on next page)
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(G) Spateo reveals consistent gene expression patterns of Ubx, Abd-4, and Abd-B, compared with BDGP in situ database after interpolating the sparse raw gene

expression.

(H) The workflow to generate the predicted cell migration trajectories, using the germband as an example.

(I) The quiver plot and heatmap of the morphometric acceleration for the germband. Left: the quiver plots of the cells from the germ band, colored by the ac-

celeration calculated from the inferred morphometric vector field. The acceleration is a vector, and we use its length to color cells. Right: the heatmap of the

average morphometric acceleration value of the germband along its anterior (A) to posterior (P) axis.

(J) Same as in (H) but for curl.

(K) The gene-wise scatterplot of the mean morphometric acceleration as a function of the mean index of the corresponding principal points of the cells with

positive gene expression for each gene along the A-P axis of the embryo.

(L) Top enriched Gene Ontology pathways of the genes with significant acceleration value along the A-P axis.

(M) From top to bottom: the spatial organ interaction plot; the quiver plot of the midgut and muscle cells, colored by cell types; the quiver plot of midgut and

muscle cells, colored by curl values.

(N) Scatterplots of the expression of example top genes that significantly change as a function of the curl magnitude across cells.
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Figure S9. Spateo infers cell migration paths and identifies morphogenesis regulators of Drosophila CNS and midgut, related to Figure 6
(A) Schematic of Drosophila germband retraction (i) and the constituent central nervous system or CNS and midgut (ii) from embryonic stages 11 to 13.

(B) Spateo maps single cells of CNS from stage 12 embryo to that of stage 13 embryo, reconstructs the morphometric vector field, and predicts cell migration

trajectories.

(C) Spateo reveals spatial domains of active cell migration. Top: schematic of the P1-P3 CNS segments; bottom left: the quiver plots of the cells from the CNS,

colored by the acceleration calculated from the inferred morphometric vector field; bottom right: boxplot of the distribution of the migration acceleration

magnitude of the P1, P2, and P3 regions.

(D) Same as in (C) bottom left but from left to right, for acceleration, divergence, curl, curvature, and torsion of the morphometric vector field from a subset of the

CNS with significant acceleration shown in (C) bottom left.

(E) Spateo identifies a CNS region with the highest curvature and potential morphogenic genes with spatially enriched gene expression. Left: the scatterplot of the

meanmorphometric curvature across cells as a function of the index of the principal points from the cells along the A-P axis of the embryo. Backbone is grouped

into three regions according to the curvature values, with R2 having the highest overall curvature value. Right: heatmap of potential morphogenic genes show a

significant enrichment in the CNS regions 2 or R2. Genes are ordered by q value, incrementally from left to right.

(F) Gene expression scatterplots of known CNS migration factors of osp and TBPH, showing enriched gene expression near the CNS corner.

(G) The same as (B), but for midgut.

(H) The same as (D), but for the midgut. Posterior midgut has the strongest cell migration pattern.

(I) Spateo identifies morphogenic factors that are significantly correlated with curl, for both the posterior and anterior midgut. Left: boxplot of the gene expression

distribution ofmorphogenetic factors for the posterior (top) or anterior (bottom)midgut. Genes are ordered by q value, incrementally from themiddle to either side.

Right: 3D scatterplot of the gene expression of example morphogenic factors for either the posterior or anterior midgut.
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Figure S10. Spateo-viewer is a flexible and customizable framework, compatible with many different platforms, related to Figure 7

(A) Spateo-viewer is a cross-platform compatible web application, with support for various operating systems and devices.

(B) File folder structure of Spateo-viewer detailing the location and organization of custom files for implementing new functionalities, applicable to both the

Reconstructor and Explorer viewers. Four files are necessary for the custom function implementation, each corresponds to a specific step.

(C) Outline of the first step involved in implementing custom functionalities in Spateo-viewer: adding a custom function to ‘‘pv_custom.py.’’

(D) Same as in (C), but for the second step: setting key parameters with their initial values.

(E) Same as in (C), but for the third step: setting callbacks for the custom function. Detailed code structures are shown.

(F) Same as in (C), but for the last step: designing the interactive card for the custom module.
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