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Dynamic changes in RNA levels are regulated by the inter-
play between RNA transcription, processing and degra-
dation1,2. Understanding the mechanisms by which the 

transcriptome is regulated in functionally diverse cell types thus 
requires cell-type-specific measurements of the temporal dynamics 
of gene expression. Recent advances in single-cell RNA sequencing 
(scRNA-seq) are leading to a more complete understanding of hetero-
geneity in cell types and states3. However, standard scRNA-seq meth-
ods capture a mixture of newly transcribed (‘new’) and pre-existing 
(‘old’) RNAs without being able to temporally resolve RNA dynamics.

Commonly used approaches for distinguishing new from old 
RNAs within the same population of transcripts rely on RNA meta-
bolic labeling that utilizes exogenous nucleoside analogs such as 
4-thiouridine (4sU) and biochemical enrichment of labeled RNAs1. 
Although these methods have yielded critical insights into RNA 
dynamics regulation, they require ample starting material and pres-
ent challenges for enrichment normalization. Several methods were 
recently developed to chemically convert 4sU into cytidine analogs, 
yielding uracil-to-cytosine substitutions that label newly transcribed 
RNAs after reverse transcription4–6. These chemical approaches 
permit direct measurement of temporal information about cellular 
RNAs without biochemical enrichment. Recent studies demon-
strated the feasibility of jointly profiling new and old transcriptomes 
at single-cell levels by integrating Smart-seq/plate-based scRNA-seq 
with one of these chemical approaches such as thiol(SH)-linked 
alkylation for the metabolic sequencing of RNA (SLAM-seq)7,8. 
However, these Smart-seq/plate-based methods suffer from several 
limitations. First, they are costly and time consuming, thus prohib-
iting large-scale analysis of highly heterogeneous cell populations. 
Second, these methods lack unique molecular identifiers (UMIs), 
preventing accurate quantification of new transcript levels.

To overcome these constraints, we developed scNT-seq, a 
high-throughput and UMI-based scRNA-seq method that com-
bines metabolic RNA labeling, droplet microfluidics and chemically 

induced recoding of 4sU to a cytosine analog to simultaneously 
measure new and old transcriptomes from the same cell. We demon-
strate that scNT-seq enables time-resolved analysis of cellular RNA 
dynamics, gene regulatory network (GRN) activity and cell-state 
trajectories at single-cell levels while it substantially improves the 
scalability and reduces the cost.

Results
Development and validation of scNT-seq. To develop scNT-seq, 
we focused on the Drop-seq platform because its unique barcoded 
bead design affords immobilization of mRNAs for massively parallel 
on-bead chemical conversion reactions and UMI-based scRNA-seq 
analysis, and this droplet microfluidics platform is widely adopted9–13. 
The scNT-seq method consists of the following key steps (Fig. 1a): 
(1) metabolically labeling of cells with 4sU; (2–3) co-encapsulating 
individual cells with a barcoded oligo(dT) primer-coated bead in 
a nanoliter-scale droplet; (4) performing one-pot 4sU chemical 
conversion on pooled barcoded beads; (5–8) reverse transcription, 
cDNA amplification, tagmentation and indexing PCR; and (9) using 
a UMI-based statistical model to analyze T-to-C substitutions within 
transcripts and infer the new transcript fraction14.

To identify the optimal reaction conditions on barcoded beads, 
we explored two chemical approaches (SLAM-seq4: iodoacetamide 
(IAA)-based reaction; TimeLapse-seq5: 2,2,2-trifluoroethylamine 
(TFEA)/sodium periodate (NaIO4)-based reaction) and bench-
marked their performance with species-mixing experiments 
using mouse embryonic stem cells (mESCs) and human K562 
cells. TFEA/NaIO4-based chemistry substantially outperformed 
IAA-based chemistry in a one-pot chemical reaction on pooled 
beads (Fig. 1b). We noted that chemical treatment alone nega-
tively affected the library complexity (genes/UMIs detected per 
cell; Extended Data Fig. 1a), but this issue could be overcome by 
using second-strand synthesis (2nd SS) to recover partially reversed 
transcribed mRNAs (see below). The collision rate was compara-
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ble between TFEA/NaIO4-based scNT-seq and standard Drop-seq 
(Fig. 1b), demonstrating the specificity of scNT-seq in analyzing 
single-cell transcriptomes. As expected, 4sU labeling and TFEA/
NaIO4 treatment resulted in a specific increase in T-to-C substitu-
tion rate (Fig. 1c) and in the fraction of labeled transcripts at pop-
ulation and single-cell levels (Fig. 1d and Extended Data Fig. 1b). 
Moreover, scNT-seq worked efficiently with both freshly isolated 
and cryo-preserved cells (Extended Data Fig. 1c), and aggregated 
single-cell transcriptomes were highly correlated between bio-
logical replicates (Extended Data Fig. 1d). Collectively, these data 
demonstrate the feasibility of detecting metabolically labeled new 
transcripts at single-cell levels using a high-throughput droplet 
microfluidics platform.

Evaluating scNT-seq performance for detecting activity-induced 
new RNAs. Neuronal activity induces the expression of hundreds 

of activity-regulated genes (ARGs) in the vertebrate brain, lead-
ing to new protein synthesis and epigenetic changes necessary for 
short- and long-term memories of experiences15. Recent studies 
suggest that different neuronal activity patterns could induce a dis-
tinct set of ARGs16 that are highly cell-type specific in vivo10. The 
activity-induced gene expression program is well characterized 
for primary cortical neuronal cultures, which can serve as a model 
system for evaluating the performance of scNT-seq in quantify-
ing new and old RNAs. We metabolically labeled primary mouse 
cortical cultures (200 μM 4sU) for 2 h and stimulated the cells with 
different durations of neuronal activity (0, 15, 30, 60 and 120 min 
of potassium chloride (KCl)-mediated membrane depolarization; 
Extended Data Fig. 2a). After quality filtering, we retained 20,547 
paired single-cell new and old transcriptomes (Fig. 2a, Extended 
Data Fig. 2b and Supplementary Table 1). We identified all major 
cell types expected in the embryonic mouse cortex: Neurod6 + corti-
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cal excitatory neurons (Ex, 68.5%), four Gad1 + inhibitory neuronal 
subtypes (Inh1–4, 13.9% in total), Dlx1/Dlx2 + inhibitory neuronal 
precursors (Inh-NP, 1.7%), two subpopulations of Nes/Sox2 + excit-
atory neuronal precursors (Ex-NP1/2, 10.4% in total) and Nes/
Aldh1l1 + radial glial cells (RG, 5.5%; Fig. 2a and Extended Data 
Fig. 2b).

To evaluate scNT-seq for quantitatively distinguishing new from 
old RNAs and the extent of incomplete 4sU labeling of new tran-
scripts7,17, we counted and statistically modeled T-to-C substitutions 
in UMI-linked transcripts (Methods). Compared to Smart-seq/
plate-based methods that are constrained by the fixed read length, 
the coverage of uridines or T-to-C substitutions in each tran-
script was substantially improved in UMI-based scNT-seq analysis 
(Extended Data Fig. 3a,b). Analysis of both activity-induced genes 
(for example, Fos, new/total RNA ratio: 90.0%) and slow turnover 
housekeeping genes (for example, Mapt, new/total RNA ratio: 1.7%) 
in excitatory neurons suggests that our statistical correction model 
allows scNT-seq to accurately distinguish newly transcribed RNAs 
from pre-existing ones (Extended Data Fig. 3c–e).

Principal component analysis (PCA) of highly variable genes 
(HVGs) could completely separate activity-induced (120 min) from 
resting-state (0 min) excitatory neurons using either new RNAs or 
new-to-total RNA ratios (NTRs; Fig. 2b). Interestingly, PCA on total 
or old RNAs still partially separated resting and stimulated neurons 
(Fig. 2b), which may in part be due to the neuronal activity-regulated 
stability of some old RNAs. By contrast, non-neuronal cells (Ex-NP/
RG) did not exhibit activity-dependent separation (Fig. 2b). Some 
ARGs, such as Jun and Btg2, were specifically induced in excitatory 
neurons, but other ARGs (for example, Egr1, Fos and Npas4) were 
broadly induced in many cell types, including non-neuronal cells, 
albeit with different magnitudes and response patterns (Fig. 2c, 
Extended Data Fig. 2c,d and Supplementary Table 2). There was 
little to no change at old RNA levels in response to activity (Fig. 2c). 
Thus, scNT-seq reveals cell-type-specific, activity-induced, imme-
diate transcriptional changes.

Identification of neuronal activity-induced, time-resolved regu-
lon activity. Regulon activity of a transcription factor (TF) can 
be quantified at single-cell resolution by linking cis-regulatory 
sequences to single-cell gene expression. Jointly profiling new and 
old transcriptomes by scNT-seq may enable parallel analysis of both 
dynamic regulons induced by external stimuli and stable regulons 
related to cellular identities. By applying single-cell regulatory net-
work inference and clustering (SCENIC)18 to paired single-cell new 
and old transcriptomes, we identified 79 co-regulated TF regulons 
with significant cis-regulatory motif enrichment in at least one cell 
type (Supplementary Table 3). Among them, 18 regulons showed 
significant changes in response to neuronal activity patterns (Fig. 
2d). Many immediately early genes (IEGs) that are early-response 
ARGs encode TFs required for activating late-response ARGs15. With 
newly transcribed (but not pre-existing) RNAs, SCENIC analysis 
revealed an activity-dependent increase in regulon activity of both 
IEG TFs (for example, Fos and Jun) and constitutively expressed 
TFs (for example, Srf and Mef2) that are post-translationally acti-
vated15 (Fig. 2d). Regulon activity of these TFs (for example, Jun) 
was specifically detected in neurons (Fig. 2d,e). Interestingly, we 
also identified several activity-induced TFs not previously impli-
cated in neuronal activation (Fig. 2d). For example, Maff, as a 
small MAF family protein lacking the transactivation domain19, is 
associated with both activity-dependent (mainly with new RNAs) 
and activity-independent regulon activities (Fig. 2e). Interestingly, 
target genes of Maff significantly overlap with those of the IEG TF 
Fosb (Extended Data Fig. 2e), and gene ontology (GO) analysis 
suggests that Maff targets are functionally related to neuron pro-
jection (P = 6.47 × 10−7) and synapse (P = 2.30 × 10−3). In addition, 
we found that activity-independent TF regulons are often cell-type 

specific (for example, Neurod1/2 for Ex and Dlx1/2 for Inh) and are 
associated with both new and old RNAs (Fig. 2d). Thus, scNT-seq 
can reveal temporal dynamics of cell-type-specific TF regulon activ-
ities at single-cell resolution.

Metabolic labeling-based time-resolved RNA velocity analysis. 
Recent work showed that the time derivative of gene expression, 
termed ‘RNA velocity’, can be estimated by distinguishing unspliced 
(intronic reads) from spliced (exonic reads) mRNAs in scRNA-seq 
datasets and used to inform how transcriptional states in single 
cells change over time (on the scale of hours)20. We first examined 
whether RNA velocity analysis can predict the transcriptional state 
trajectory of individual cells in response to brief (minutes) and 
sustained (hours) neuronal activation. To this end, we focused on 
the excitatory neurons, as these cells robustly respond to neuronal 
activation. However, no neuronal activity-dependent directionality 
was consistently detected in the splicing RNA velocity flow, irre-
spective of using all excitatory neurons (Extended Data Fig. 4a) or 
only high-quality cells (Fig. 3a). This is probably due to the sparsity 
of unspliced transcripts from many activity-induced genes that con-
tain few introns and/or are of fast splicing kinetics (for example, 
Egr1 and Fos; Extended Data Fig. 5a).

Because metabolic labeling can capture rapid changes in RNA 
levels21 and detection of new RNAs via 3′-tagged UMIs is largely 
independent of gene structures, we reasoned that single-cell 
paired measurements of new and total RNAs from scNT-seq can 
be used to compute metabolic labeling-based RNA velocity that is 
scaled to labeling time (molecules per unit time). To quantify this 
time-resolved RNA velocity, we utilized dynamo22, a computational 
method that explicitly models metabolic labeling-based scRNA-seq. 
Phase portraits of early- (Egr1 and Fos) and late- (for example, 
Homer1) response genes showed the expected deviations from 
the predicted steady-state relationship (Extended Data Fig. 5b). 
Measured by velocity flows (indictive of the observed and extrap-
olated cell states) in the low-dimensional embedding, metabolic 
labeling-based RNA velocity accurately recapitulated the transcrip-
tional dynamics of neuronal activation, including a general move-
ment of resting-state neurons (0 min) toward activated neurons 
(first phase) and second-phase movement from briefly stimulated 
cells (15–30 min) to longer stimulation (60–120 min; Fig. 3a and 
Extended Data Fig. 4a). Furthermore, randomized velocity controls 
support the specificity of the observed time-resolved RNA velocity 
flow (Fig. 3a and Extended Data Fig. 4a).

The two distinct phases of observed RNA velocity flows cor-
relate with early- and late-response gene expression, respectively 
(Fig. 3b and Extended Data Figs. 4b and 6). We further identified 
activity-regulated TF regulons that were significantly enriched 
for early- (n = 24) or late- (n = 73) response genes (Fig. 3c and 
Extended Data Fig. 2d). We calculated the regulon activity of these 
activity-regulated TFs in each cell, based on the newly transcribed 
RNA levels of its target genes. By projecting regulon activity of these 
TFs onto the same embedding of velocity analysis, we constructed a 
single-cell resolution, time-resolved regulon activity map for a dis-
tinct class of TFs: early response (Jun) versus late response (Mef2d 
and Maff; Fig. 3d and Extended Data Fig. 4c). Thus, scNT-seq sup-
ports metabolic labeling-based, time-resolved RNA velocity analy-
sis of dynamic cellular processes.

scNT-seq reveals distinct RNA regulatory strategies during 
stem cell-state transition. Determining RNA regulatory strate-
gies in rare, transient cell populations is critical to understanding 
cell-state transition but remains a challenge. Cultured mESCs are 
derived from the inner cell mass of preimplantation blastocysts and 
exhibit a high level of transcriptional heterogeneity23. Interestingly, 
cells resembling totipotent 2C-stage embryos arise spontaneously in 
mESC cultures24, but 2C-like cells are rare (<1% in standard condi-
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Fig. 2 | scNT-seq captures newly synthesized transcriptomes and time-resolved regulon activity in response to neuronal activation. a, UMAP 
visualization of 20,547 mouse cortical cells colored by their cell types. Fractions of each cell type are shown on the left. Ex, excitatory neurons; Inh, 
inhibitory neurons; NP, neural progenitors; RG, radial glial cells. b, PCA plots showing excitatory neurons and non-neuronal cells at resting (0 min, 
red) or stimulated (120 min, blue) states based on their newly synthesized transcriptomes (new RNAs), pre-existing transcriptomes (old RNAs), 
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with significantly increased new RNA levels of their target genes in at least one cell type (adjusted P < 0.05 and fold change > 1.5) after KCl stimulation. 
A two-sided Wilcoxon rank-sum test was used to assess the significance of the difference. P values were adjusted by Bonferroni correction. P values and 
regulon activity of each TF are available as source data and in Supplementary Table 3, respectively. e, Box plots showing cell-type-specific regulon activity 
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visualization’ in the Methods for definitions of box plot elements.
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Fig. 3 | Metabolic labeling-based RNA velocity analysis of rapid changes in transcriptional states. a, UMAP visualization of excitatory neurons (n = 3,066 
cells, >2,000 genes detected per cell) that were characterized by standard splicing kinetics-based (left) or metabolic labeling-based (right) RNA velocity 
analyses. Cells are color coded by time points. The streamlines indicate the integration paths that connect local projections from the observed state to the 
extrapolated future state. The lower UMAP plots (same as upper) show randomized velocity controls for splicing kinetics- or metabolic labeling-based 
RNA velocity. The streamline thickness indicates the magnitude of the velocity. b, UMAP visualization (same as right plot in a) of excitatory neurons 
colored by the average new RNA expression level (natural log transformation (TP10K + 1)) of 24 early- (left) or 73 late- (right) response genes. c, Dot 
plot showing enrichment of 24 early- or 73 late-response genes in activity-dependent TF regulon targets from all excitatory neurons (n = 13,511 cells, 
>500 genes detected per cell). The predicted regulon target genes were used as background for calculating statistical significance. The significance 
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tions)24. Recent scRNA-seq studies revealed changes in total RNAs 
during the transition from the pluripotent to totipotent 2C-like 
state and identified an intermediate state during the transition25,26. 
It remains unclear how regulation of RNA synthesis and degrada-
tion contributes to the stepwise conversion between pluripotent and 
2C-like states.

To capture rare 2C-like cells without using transgene induction26 
or fluorescent reporter lines24, wild-type (WT) mESCs were meta-
bolically labeled with 4sU for 4 h and were subjected to scNT-seq 
analysis. After quality filtering, we obtained 4,633 single-cell tran-
scriptomes from two biological replicates (Extended Data Fig. 
7a,b). Besides mouse feeder cells (Col1a2 and Fbln2), scNT-seq also 
identified all three principal states (pluripotent, 98.3%; intermedi-
ate, 1.0%; totipotent 2C-like, 0.7%) in mESCs using state-specific 
marker genes (Extended Data Fig. 7c, d). The percentage of rare 
2C-like cells is consistent with previous reports24,27. As expected, 
many state-specific genes with regulatory functions (for example, 
Zscan4d) are associated with a higher proportion of new transcripts 
than those of housekeeping genes (for example, Gapdh; Extended 
Data Fig. 7e).

Next, we combined a pulse-chase strategy with scNT-seq to 
determine state-specific mRNA degradation rates (Fig. 4a). After 
removing partially differentiated cells (0.6% of all cells), we retained 
20,059 stem cells from seven time points (Fig. 4b). We calculated 
the half-life of mRNAs in each cell state by computing the propor-
tion of labeled transcripts for each gene at every time point and fit-
ting a single exponential decay model. Consistent with bulk assay 
results4, we observed a substantial accumulation of T-to-C substitu-
tions after 24 h of metabolic labeling and subsequent decrease to 
baseline after chase (Fig. 4c and Extended Data Fig. 8a). The RNA 
half-life determined by pulse-chase scNT-seq is concordant with 
those derived from bulk SLAM-seq assays4 (Pearson’s r = 0.83; Fig. 
4d). Interestingly, RNA half-life estimated from one time-point 
labeling experiment28 was less correlated with measurements from 
bulk assays (Pearson’s r = 0.51; Fig. 4d). Furthermore, the top 10% 
most stable and unstable transcripts were enriched for similar GO 
terms that were uncovered by bulk SLAM-seq assays4 (Extended 
Data Fig. 8b). Finally, we analyzed 2,616 commonly detected genes 
between cell states to reveal state-specific regulation of mRNA sta-
bility (Extended Data Fig. 8c,d and Supplementary Table 4). Thus, 
scNT-seq enables transcriptome-wide measurement of RNA stabil-
ity in rare cell populations.

Using data from the one time-point labeling (Extended Data Fig. 
7a) and pulse-chase (Fig. 4b) experiments, we computed the RNA 
synthesis and degradation rates in all three stem cell states (Methods). 
Next, we performed clustering of the synthesis rates, degradation 
rate constants and total RNA levels of 445 genes that exhibited high 
expression variability between states (Fig. 4e and Supplementary 
Table 5). By computing the similarity between synthesis and degra-
dation dynamics29, we identified three major RNA regulatory strate-
gies during the stepwise pluripotent-to-2C transition: cooperative 
(110 genes; negative similarity between RNA biogenesis and degra-
dation dynamics), neutral (136 genes; small relative changes in RNA 
degradation rate compared with the synthesis rate) and destabiliz-
ing (199 genes; simultaneous increase or decrease of the synthesis 

rate and the degradation rate). Further analysis indicated that genes 
with similar cellular functions may be controlled by similar RNA 
regulatory strategies. For instance, among the genes with destabi-
lizing regulatory strategies, we identified functional enrichment 
for mRNA splicing (adjusted P = 1.1 × 10−9), transcription regula-
tion (adjusted P = 3.9 × 10−5) and nucleosome assembly (adjusted 
P = 9.8 × 10−3). Interestingly, even among the same subset of genes 
that follow destabilizing strategies and are downregulated in 2C-like 
states compared with the pluripotent state, total RNA dynamics of 
Tet1 (Pearson’s r = 0.99) and Lefty2 (Pearson’s r = 0.95) were pref-
erentially regulated by changes in the RNA synthesis rate and the 
degradation rate, respectively (Fig. 4e and Supplementary Table 5). 
These results demonstrate that changes in both RNA synthesis and 
degradation contribute to gene expression dynamics during stem 
cell-state transitions.

Time-resolved regulon analysis reveals TET-mediated regulation 
of the pluripotent-to-2C transition. For many genes differentially 
expressed between pluripotent and 2C-like states (for example, Ncl, 
Tet1 and Zfp42), their new RNA levels exhibited a more pronounced 
difference than that of old or total RNAs (Extended Data Fig. 9a). 
GO enrichment analysis further revealed that new RNAs are more 
robust than old or total RNAs to uncover certain state-specific 
biological processes such as ‘protein deubiquitination’ and related 
genes (for example, Usp17lc, Usp17ld and Usp17le; Extended Data 
Fig. 9a,b). These results support the observation that changes in 
RNA synthesis rates drive the RNA dynamics of many state-specific 
genes during the state transition (Fig. 4e).

To further investigate transcriptional regulators underlying 
the control of RNA synthesis during the pluripotent-to-2C transi-
tion, we applied single-cell regulon analysis to both new and old 
transcriptomes (Fig. 5a). Because new RNAs exhibited more rapid 
changes than old RNAs (Fig. 5b) and aggregated new RNA levels of a 
TF’s target genes provides a more direct measurement for its regulon 
activity, we focused our analysis on TFs or epigenetic regulators that 
show state-specific ‘new RNA’ regulon activity (Fig. 5c). In addition 
to well-established TFs related to pluripotency (for example, Myc/
Max and Nanog) and cell-cycle regulation (for example, E2f3 and 
E2f5), several epigenetic regulators were associated with a marked 
decrease in new RNA regulon activity during the pluripotent-to-2C 
transition (Fig. 5c). The TET family of DNA dioxygenases (Tet1–3) 
is of particular interest, as these epigenetic enzymes mediate active 
DNA demethylation at cis-regulatory elements and are known to 
play critical roles in maintaining mESC pluripotency30,31. During the 
transition from the pluripotent to 2C-like state, both new RNA level 
and regulon activity of Tet1 rapidly decreased (Fig. 5b,c). The new 
RNA level of Tet2 also decreased in both intermediate and 2C-like 
states, while Tet3 was nearly undetected in all three states (Extended 
Data Fig. 9c).

To better understand how TET enzymes regulate cell-state tran-
sition, we generated mESCs deficient for all three Tet proteins (Tet1, 
Tet2 and Tet3 triple knockout; Tet-TKO) via CRISPR–Cas9 genome 
editing32 and analyzed isogenic WT and Tet-TKO mESCs in paral-
lel using scNT-seq (Extended Data Fig. 9d). While WT and mutant 
cells were intermingled in intermediate and 2C-like states, they 

Fig. 4 | scNT-seq reveals mRNA regulatory strategies during stem cell-state transition. a, Design of pulse-chase scNT-seq experiments. b, UMAP 
visualization of 20,059 mESCs colored by three stem cell states (left) or by seven time points during chase (right). Cell numbers for each state across 
seven time points are also shown. c, Line plots showing changes in nucleotide substitution rates across seven time points of pulse chase. d, Scatterplots 
showing Pearson’s correlation of RNA half-life measurements (n = 1,926 genes) between this study (top: one time-point inference (4sU, 4 h); bottom: 
multiple time-point pulse chase) and bulk SLAM-seq4 in mESCs. e, Clustered heat maps of estimated synthesis rates (left), degradation rates (middle) 
and observed total RNA levels (right) of 445 genes across three stem cell states. The values in intermediate or 2C-like states were normalized to the 
pluripotent state. Also shown are RNA regulatory strategies (cooperative, 110 genes; neutral, 136 genes; destabilizing, 199 genes) color coded by similarity 
between the synthesis and degradation rates. Right, four representative genes with their raw synthesis and degradation rates and total RNA levels are 
indicated. The synthesis rate, degradation rate, total RNA abundance and regulatory strategy of each gene are shown in Supplementary Table 5.
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were separately clustered by both genotypes and cell-cycle states 
within the pluripotent state (Fig. 5d and Extended Data Fig. 9e). 
Compared to WT cells, substantially more Tet-TKO cells in the plu-
ripotent state were found proximal to the intermediate and 2C-like 

states in the uniform manifold approximation and projection 
(UMAP; Fig. 5d), suggesting that Tet-TKO cells are more poised 
to transition to intermediate and 2C-like states. Consistent with a 
previous study27, Tet-TKO cells exhibited a marked increase in the 
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2C-like state (3.6 fold) compared to WT cells (Fig. 5e). Interestingly, 
Tet-TKO cells also showed a 2.2-fold increase in the intermediate 
state, suggesting that Tet enzymes act as regulators in the early stage 
of pluripotent-to-2C transition.

A recent study showed that Myc negatively regulates the transi-
tion toward intermediate and 2C-like states by actively maintain-
ing the pluripotent transcriptome26. Because Tet1 regulon activity 
dynamics is similar to that of Myc/Max (Fig. 5c) and Tet1 targets are 
significantly overlapped with Myc/Max targets (Extended Data Fig. 
9f), we asked whether Tet1 inhibits the pluripotent-to-2C transi-
tion through a similar mechanism. First, Tet1 regulon targets were 
significantly overlapped with pluripotent state-enriched newly tran-
scribed RNAs (P = 1.36 × 10−129) but not with 2C-like state-enriched 
new RNAs (P = 0.94). Second, differential gene expression analysis 
identified 2,281 genes upregulated and 205 genes downregulated in 
the Tet-TKO pluripotent state (Fig. 5f and Supplementary Table 6), 
but very few genes were dysregulated in intermediate and 2C-like 
states in the absence of TET proteins. Finally, Tet1 direct targets were 
significantly enriched for downregulated genes (P = 1.29 × 10−30) but 
less so for genes upregulated (P = 6.32 × 10−3) in Tet-TKO mESCs, 
suggesting that TET proteins may maintain expression of their tar-
get genes functionally related to the pluripotent state. Indeed, GO 
analysis showed that genes downregulated in Tet-TKO mESCs were 
enriched for pluripotent state-specific biological processes (Fig. 5g). 
Collectively, Tet proteins may act as an epigenetic barrier for the 
transition from pluripotent to intermediate and 2C-like states by 
maintaining a pluripotent state-specific transcriptome.

Second-strand synthesis reaction substantially enhances the effi-
ciency of scNT-seq. We reasoned that TFEA/NaIO4 treatment may 
increase the failure rate of generating full-length cDNAs (‘truncated’ 
cDNAs in Fig. 6a), which is required for the ‘template-switching’ 
reaction to add the second PCR handle for cDNA amplification 
(step 6 in Fig. 1a). Indeed, the generation of truncated cDNA dur-
ing reverse transcription could be a major reason leading to lower 
library complexity in scRNA-seq methods using the on-bead 
template-switching reaction33.

To improve scNT-seq performance for 3′-tagged new transcript 
counting analysis, we developed a random- primed second-strand 
synthesis (2nd SS) reaction to recover truncated cDNA (Fig. 6a) and 
benchmarked the performance of this approach in human K562 cells. 
The 2nd SS reaction in scNT-seq (4sU/TFEA/2nd SS) was compat-
ible with the analysis of T-to-C substitution (Extended Data Fig. 10a) 
and led to a 2.2-fold increase in the number of genes and a 4-fold 
increase in the number of UMIs detected per cell, when compared to 
the standard scNT-seq protocol (4sU/TFEA) at matched sequencing 
depths (Fig. 6b). Further comparisons indicated that the new and old 
RNA levels and NTRs from the 2nd SS scNT-seq protocol were highly 
concordant with those derived from the standard protocol (Fig. 6c).

Next, we validated the 2nd SS scNT-seq protocol in analyzing 
cell-cycle-state-specific genes in K562 cells. All three experimen-
tal protocols (Drop-seq control: 4sU/2nd SS; scNT-seq: 4sU/TFEA 
or 4sU/TFEA/2nd SS) readily revealed major cell-cycle phases 

using PCA (Fig. 6d and Extended Data Fig. 10b). While the lev-
els of new RNAs, old RNAs and NTRs were generally comparable 
between standard and 2nd SS scNT-seq protocols (Extended Data 
Fig. 10c,d), 2nd SS scNT-seq increased the detection sensitivity for 
many genes (for example, MKI67 in S phase and CENPE in G2M 
phase; Extended Data Fig. 10c,d), which is consistent with increased 
library complexity in 2nd SS scNT-seq datasets.

Discussion
By combining TimeLapse chemistry with a high-throughput drop-
let microfluidics platform, scNT-seq enables joint profiling of newly 
synthesized and pre-existing transcriptomes of the same cell, cap-
turing temporal information about mRNA at single-cell levels. 
Standard RNA velocity analysis uses endogenous RNA splicing 
kinetics to inform on the future trajectory of a cell; thus, it is limited 
by uncontrolled timing of RNA splicing and the sparsity of intronic 
reads for many genes. Because the timing and length of metabolic 
labeling periods can be experimentally controlled, direct counting 
of new and old transcripts via 3′-tagged UMIs in scNT-seq provides 
an unbiased means to calculate RNA kinetics parameters for all 
detectable genes. Using computational models that explicitly incor-
porate metabolic labeling-based single-cell measurements22, we 
could compute time-resolved RNA velocity for highly dynamic pro-
cesses (minutes to hours). Furthermore, measuring new RNA levels 
of target genes linked to a TF can temporally resolve TF regulon 
activity at single-cell levels during external stimulation or cell-state 
transitions. Finally, with pulse-chase experiments, scNT-seq can 
more accurately estimate RNA kinetics parameters, revealing RNA 
regulatory strategies in rare cell populations.

ScNT-seq is conceptually similar to sci-fate34, a method that inte-
grates single-cell combinatorial indexing with SLAM-seq chemis-
try, and was reported during the revision of this manuscript. Both 
methods share several technical advantages over SMART-seq/
plate-based methods such as scSLAM-seq7 and NASC-seq8 
(Supplementary Table 7). First, when combined with 2nd SS reac-
tions, scNT-seq detects ~6,000 genes and ~20,000 UMIs per cell with 
a sequencing depth of ~50,000 reads per cell. This is comparable to 
the performance of sci-fate (~6,500 genes and ~26,000 UMIs per 
cell with ~200,000 reads per cell). By contrast, scSLAM-seq requires 
~2 million reads to detect ~5,000 genes per cell. Second, scNT-seq 
is highly scalable, and we successfully analyzed from ~1,000 to 
>20,000 cells in one experiment. Further, scNT-seq is compatible 
with cryo-preserved cells, facilitating simultaneous handling of 
multiple samples. Third, scNT-seq costs <$0.50 per cell for library 
preparation and sequencing, which is >50-fold more cost-effective 
than SMART-seq/plate-based methods.

We note that the standard scNT-seq protocol permits amplifi-
cation of full-length cDNAs and can be further optimized to cap-
ture metabolically labeled, full-length transcript isoforms using a 
long-read sequencing approach35 and to uncover temporal informa-
tion about mRNA processing events. TimeLapse chemistry can also 
utilize 6-thioguanine to mark new RNAs with G-to-A conversions36. 
Thus, dual labeling of cells with 4sU and 6-thioguanine followed by 

Fig. 5 | Analysis of time-resolved regulon activities and TET-dependent regulation of the stepwise pluripotent-to-2C transition. a, Experimental 
schematic of identifying time-resolved regulon activity across stem cell states. b, Line plots showing the fold changes of new and old RNA abundances of 
Tet1 and Zscan4d in intermediate and 2C-like states relative to pluripotent states. c, Clustered heat maps showing regulon activities inferred from new and 
old RNA levels across three stem cell states. d, UMAP visualization of WT (n = 4,633 cells) and Tet-TKO (n = 2,319 cells) mESCs colored by genotypes 
(left) or stem cell states (right). e, Fractions of three stem cell states in two biological replicates (rep1 and rep2) of WT and Tet-TKO mESC cultures. f, 
Volcano plots showing genes differentially expressed between WT and Tet-TKO mESCs in three stem cell states. Genes significantly upregulated (red) 
or downregulated (blue) in Tet-TKO cells were identified by a two-sided Wilcoxon rank-sum test (Bonferroni-adjusted P value < 0.05). Both Tet1 and 
Tet2 were significantly decreased in Tet-TKO cells. Cell number, WT: n = 4,532 (pluripotent), 47 (intermediate) and 30 (2C-like); Tet-TKO: n = 2,168 
(pluripotent), 51 (intermediate) and 53 (2C-like). The list of differentially expressed genes and their P values are shown in Supplementary Table 6. g, GO 
enrichment analysis of genes significantly downregulated or upregulated in Tet-TKO mESCs (pluripotent state). ER, endoplasmic reticulum. Significance of 
enrichment was determined with a hypergeometric test and color scaled by −log10(FDR-adjusted P value). P values are available as source data.
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scNT-seq can enable two independent transcriptomic recordings in 
single cells, permitting time-series experimental designs to untan-
gle complex RNA regulatory mechanisms and to predict past and 

future cell states over an extended time period. High-throughput 
time-resolved single-cell transcriptomics thus provides a broadly 
applicable strategy to investigate dynamic biological systems.
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Methods
mESC cultures and metabolic labeling. WT and Tet-TKO J1 mESCs from the 
American Type Culture Collection (ATCC, SCRC-1010) were cultured in the 
presence of Mitomycin C-inactivated mouse embryonic fibroblasts on 0.1% 
gelatin-coated (Millipore, ES-006-B) six-well plates in DMEM (Gibco, 11965084) 
supplemented with 15% fetal bovine serum (Gibco, 16000044), 0.1 mM nonessential 
amino acid (Gibco, 11140050), 1 mM sodium pyruvate (Gibco, 11360070), 2 mM 
l-glutamine (Gibco, 25030081), 50 μM 2-mercaptoethanol (Gibco, 31350010), 1 μM 
MEK inhibitor PD0325901 (Axon Med Chem, Axon 2128), 3 μM GSK3 inhibitor 
CHIR99021 (Axon Med Chem, Axon 2128) and 1,000 U ml−1 leukemia inhibitory 
factor (Gemini Bio-Products, 400-495-7). Cells were maintained at 37 °C with 
5% CO2 and passaged every 2–3 d. The average doubling time of J1 mESCs in the 
presence of 4sU as determined by cell counting was 14.8 h.

For labeling experiments, 4sU (Alfa Aesar, J60679) was dissolved in 
dimethylsulfoxide to make 1 M stock. WT and Tet-TKO mESCs were seeded at a 
density of 3 × 105 cells per ml 2 d before the labeling experiments and cultured in 
feeder-free conditions (0.1% gelatin-coated plates). One time-point 4sU labeling 
was performed by incubating mESCs in fresh medium supplemented with 4sU (at 
a final concentration of 100 μM). After 4 h of labeling, mESCs were rinsed once 
with PBS and dissociated into single-cell suspensions with TrypLE-Express (Gibco, 
12605010) for 5 min at 37 °C.

CRISPR–Cas9 genome editing in mESCs. Tet-TKO J1 mESCs were generated by 
CRISPR–Cas9 genome editing using previously validated guide RNAs (gRNAs)32. 
Briefly, gRNA oligonucleotides were cloned into lentiCRISPR v2 vector (Addgene 
52961) as described37. After reaching ~70% confluency on 0.1% gelatin-coated 
six-well plates, WT J1 mESCs were dissociated and 2 million cells were 
co-transfected with 1 µg of lentiCRISPRv2-sgTet1, 1 µg of lentiCRISPRv2-sgTet2 
and 1 µg of lentiCRISPRv2-sgTet3 vectors in suspension using Lipofectamine 
2000 (Invitrogen, 11668019) as recommended by the manufacturer. Three days 
after transfection, 30,000 transfected mESCs were seeded on a 10-cm dish coated 
with 0.1% gelatin in the presence of mitotically inactivated feeder cells, and 
0.5 µg ml−1 puromycin was added to enrich transfected mESCs for 2 d. After 14 d, 
single colonies were picked and expanded in 24-well plates. DNA isolation, PCR 
amplification of Tet1, Tet2 and Tet3 loci and Sanger sequencing was performed to 
genotype the clonal cell lines. Inactivation of Tet1–3 was further confirmed by the 
lack of 5-hydroxymethylcytosine via mass spectrometry as described38.

Human K562 cell cultures and species-mixing experiments. Human K562 
cells (ATCC, CCL-243) were maintained at 37 °C with 5% CO2 in RPMI medium 
supplemented with 10% fetal bovine serum (Sigma, F6178) in a T75 flask and 
passaged every 3 d. For species-mixing experiments, the mESCs or K562 cells were 
seeded at 3 × 105 cells per ml the day before the experiment and incubated with 
medium supplemented with 100 μM 4sU. After 4 h of labeling, mESCs and K562 
cells were washed once with PBS and harvested for scNT-seq analysis.

Mouse cortical neuronal culture and activity stimulation. Mouse cortices were 
dissected from embryonic day 16 (E16) C57BL/6 embryos of mixed sex (Charles 
River). Cortical neurons were dissociated with papain (Worthington) and plated on 
six-well plates (at a density of ~600,000 cells per well) coated with poly-l-ornithine 
(30 mg ml−1; Sigma, P2533). Mouse cortical neuronal cultures were maintained 
in neurobasal medium (Gibco, 21103049) supplemented with B27 (Gibco, 
17504044), 2 mM GlutaMAX (Gibco, 35050061), and 1× penicillin–streptomycin 
(Gibco, 15140122). Mouse experiments were conducted in accordance with the 
ethical guidelines of the National Institutes of Health and with the approval of the 
Institutional Animal Care and Use Committee of the University of Pennsylvania.

After 4 d of in vitro culture, primary cortical cultures were stimulated with 
a final concentration of 55 mM KCl for various durations (0, 15, 30, 60 and 
120 min). For metabolic labeling, neuronal cultures were incubated with medium 
supplemented with 200 μM 4sU. After 2 h of labeling, cells were washed once with 
PBS, digested in 0.05% trypsin-EDTA (Gibco, 25300054) for 20 min at 37 °C and 
harvested in PBS with a cell scraper.

Cell fixation, cryopreservation and rehydration for sample processing. Cultured 
mESCs in six-well plates were digested with TrypLE-Express and harvested as 
aforementioned. The cells were washed once with PBS and were resuspended 
with 0.4 ml of PBS containing 0.01% BSA. Cells were split into two 1.5 ml LoBind 
tubes (Eppendorf) and 0.8 ml of methanol was added dropwise, yielding a final 
concentration of 80% methanol in PBS. After mixing and incubating the cell 
suspension on ice for 1 h, the methanol-fixed cells were then stored at −80 °C for 
up to 1 month. For sample rehydration, cells were removed from −80 °C and kept 
on ice throughout the procedure. After cells were spun down at 1,000g for 5 min 
at 4 °C, methanol-PBS solution was removed, and cells were resuspended in 1 ml 
of rehydration buffer. After cell counting, the single-cell suspension was diluted 
to 100 cells per μl and immediately used for scNT-seq analysis. We compared two 
rehydration buffers (PBS based39: 0.01% BSA in PBS supplemented with 0.5% 
RNase inhibitor (Lucigen, 30281-2); SSC based40: 3× SSC, 40 mM dithiothreitol 
(DTT), 0.04% BSA and 1% RNase inhibitor; Extended Data Fig. 1c) and observed 
similar performance.

Pulse-chase experiment for RNA half-life analysis. mESCs were seeded at 
a density of 3 × 105 cells per ml the day before the experiment. 4sU metabolic 
labeling was performed by incubating mESCs in fresh medium supplemented 
with 200 μM 4sU, and media were exchanged every 4 h for the duration of the 24-h 
pulse. For the uridine chase experiment, cells were washed twice with PBS and 
incubated with fresh medium supplemented with 10 mM uridine (Sigma, U6381). 
At the respective time points (0, 0.5, 1, 3, 6, 12 and 24 h), cells were harvested, 
methanol fixed as aforementioned and stored at −80 °C for later use. On the day of 
performing droplet microfluidics assays, all samples were rehydrated (PBS-based 
buffer) and analyzed in parallel. Clustering analysis based on total RNAs separated 
mESCs (combined from seven time points) into three stem cell states (pluripotent, 
97.4% ± 0.78%; intermediate, 1.5% ± 0.49%; and 2C-like, 1.1% ± 0.38%), suggesting 
that our pulse-chase experiments did not substantially alter the state transition.

scNT-seq library preparation and sequencing. A step-by-step protocol of 
scNT-seq is provided as a Supplementary Protocol and is also available at Protocol 
Exchange14. Droplet microfluidics-based cell and barcoded bead co-encapsulation, 
library preparation and sequencing were performed as previously described with 
minor modifications10,11. Specifically, the single-cell suspension was counted 
(Countess II system) and diluted to a concentration of 100 cells per μl in PBS 
containing 0.01% BSA. The flow rates for cells and beads were set to 3,200 μl per 
hour, while QX200 droplet generation oil (Bio-rad) was run at 12,500 μl per hour.

Next, droplets were broken by adding perfluoro-1-octanol (Sigma-Aldrich). 
After droplet breakage, the beads were treated with TimeLapse chemistry to 
convert 4sU to a cytidine analog5. Briefly, 50,000–100,000 beads were washed once 
with 450 μl of washing buffer (1 mM EDTA, and 100 mM sodium acetate (pH 
5.2)), then the beads were resuspended with a mixture of TFEA (600 mM), EDTA 
(1 mM) and sodium acetate (pH 5.2; 100 mM) in water. NaIO4 was then added to 
the reaction at a final concentration of 10 mM and incubated at 45 °C for 1 h with 
rotation. The beads were washed once with 1 ml TE buffer, then incubated in 0.5 ml 
1× reducing buffer (10 mM DTT, 100 mM NaCl, 10 mM Tris (pH 7.4) and 1 mM 
EDTA) at 37 °C for 30 min with rotation, followed by washing once with 0.3 ml 2× 
reverse transcription buffer.

After one-pot chemical conversion reaction on pooled beads, the remaining 
library preparation steps were performed as previously described9. Specifically, 
for up to 120,000 beads, 200 μl of reverse transcription mix (1× Maxima 
reverse transcription buffer (Thermo Fisher), 4% Ficoll PM-400, 1 mM dNTPs 
(Clontech), 1 U per μl RNase inhibitor, 2.5 μM template switch oligo (TSO: 
AAGCAGTGGTATCAACGCAGAGTGAATrGrGrG) and 10 U per μl Maxima 
H Minus reverse transcriptase (Thermo Fisher)) were added. The reverse 
transcription reaction was incubated at room temperature for 30 min, followed by 
incubation at 42 °C for 120 min. After Exonuclease I treatment and determining 
the optimal number of PCR cycles for cDNA amplification as previously 
described10, we prepared PCR reactions (~6,000 beads per tube) for all barcoded 
beads collected for each scNT-seq run in a volume of 50 μl (25 μl of 2× KAPA 
HiFi hotstart readymix (KAPA biosystems), 0.4 μl of 100 μM TSO-PCR primer 
(AAGCAGTGGTATCAACGCAGAGT)10 and 24.6 μl of nuclease-free water) and 
amplified full-length cDNA with the following thermal cycling parameter (95 °C 
for 3 min; 4 cycles of (98 °C for 20 s, 65 °C for 45 s and 72 °C for 3 min); 9–12 cycles 
of (98 °C for 20 s, 67 °C for 45 s and 72 °C for 3 min); 72 °C for 5 min and hold at 
4 °C). We then tagmented cDNA using the Nextera XT DNA sample preparation 
kit (Illumina, FC-131-1096), starting with 550–1,000 pg of cDNA pooled from 
all PCR reactions of a sample. After cDNA tagmentation, we further amplified 
the library with 12 enrichment cycles using the Illumina Nextera XT i7 primers 
along with the P5-TSO hybrid primer (AATGATACGGCGACCACCGAGATC
TACACGCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGT*A*C). After 
quality-control analysis using a Bioanalyzer (Agilent), libraries were sequenced 
on an Illumina NextSeq 500 instrument with the 75- or 150-cycle High Output v2 
or v2.5 kit (Illumina). We loaded the library at 2.0 pM and added Custom Read1 
Primer (GCCTGTCCGCGGAAGCAGTGGTATCAACGCAGAGTAC) at 0.3 μM 
to position 7 of the reagent cartridge. Paired-end sequencing was performed on 
an Illumina NextSeq 500 sequencer as described previously11. The sequencing 
configuration was 20 bp (Read 1), 8 bp (Index 1) and 60 or 130 bp (Read 2).

SLAM-seq reaction on barcoded beads. After droplet breakage, the beads were 
washed once with NaPO4 buffer with 30% dimethylsulfoxide (50 mM, pH 8.0) 
and then incubated in 500 μl of reaction mixture containing 10 mM IAA for 
either 15 min at 50 °C (standard condition) or 1 h at 45 °C (modified condition)4. 
The reaction was stopped by adding 10 μl of 1 M DTT to a final concentration of 
20 mM. Note that the library for Fig. 1b (IAA reaction) was generated with the 
modified condition because we could not efficiently amplify cDNA using the 
standard reaction condition.

Second-strand synthesis on barcoded beads. After exonuclease I treatment, 
pooled beads were washed once with TE-SDS buffer and twice with TE-TW buffer. 
The beads were resuspended in 500 μl of 0.1 M NaOH and incubated for 5 min 
at room temperature with rotation, and 500 μl of 0.2 M Tris-HCl (pH 7.5) was 
then added to neutralize the solution. The beads were washed once with TE-TW 
buffer and once with 10 mM Tris-HCl (pH 8.0). For the 2nd SS reaction, the beads 
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were resuspended in 200 μl of reaction mixture (1× Blue buffer (Enzymatics), 4% 
Ficoll PM-400, 1 mM dNTPs (Clontech), 2.5 μM Template Switch Oligo-GAATG 
(TSO-GAATG: /5SpC3/AAGCAGTGGTATCAACGCAGAGTGAATG), 5 μM 
TSO-N9 (TSO-N9: /5SpC3/AAGCAGTGGTATCAACGCAGAGTGAAT
(N1:25252525)(N1)(N1)(N1)(N1)(N1)(N1)(N1)(N1); N1 represents a mixture of 
A, T, C and G at a 25:25:25:25 ratio) and 1.25 U μl−1 Klenow exo- (Enzymatics)). 
The reaction was incubated at room temperature for 10 min, followed by 
incubation at 37 °C for 1 h with rotation. The reaction was stopped by washing the 
beads once with TE-SDS buffer and twice with TE-TW buffer.

Read alignment and quantification of metabolically labeled transcripts. 
Paired-end sequencing reads of scNT-seq were processed as previously described10 
with some modifications. Each mRNA read (Read 2) was tagged with the cell 
barcode (bases 1–12 of Read 1) and UMI (bases 13–20 of Read 1), trimmed of 
sequencing adaptors and poly-A sequences, and aligned to the mouse (mm10, 
Gencode release vM13), human (GRCh38, Gencode release v23) or a concatenated 
mouse and human (for the species-mixing experiment) reference genome 
assembly using STAR v2.5.2a. Both exonic and intronic reads that mapped to 
predicted strands of annotated genes were retained for the downstream analysis. 
To quantify the labeled and unlabeled transcripts, uniquely mapped reads with 
a mapping score of >10 were grouped by UMI indices in every cell and were 
used to determine the T-to-C substitution using sam2tsv (https://github.com/
lindenb/jvarkit/; version ec2c2364). T-to-C substitutions with a base Phred quality 
score of >27 were retained. For each experiment, sites with background T-to-C 
substitutions (present in the control sample without TFEA/NaIO4 treatment) were 
determined and excluded for T-to-C substitution identification. After correcting 
background mutations, a UMI/transcript was defined as labeled if there was at 
least one T-to-C substitution in any one of the reads linked to the same UMI index. 
Every UMI could then be assigned as labeled or unlabeled based on presence of 
T-to-C substitutions (Fig. 1d). For each transcript, the total number of uniquely 
labeled and unlabeled UMI sequences were counted and, finally, were assembled 
into matrices using the gene name as rows and cell barcode as columns. Thus, each 
cell was associated with two digital gene expression matrices (labeled or unlabeled 
transcripts) from the scNT-seq sequencing data.

Cell-type clustering and dataset integration. The raw digital expression matrices 
of new and old UMI counts were summed up and loaded into the R package 
Seurat. For normalization, UMI counts for all cells were scaled by library size 
(total UMI counts), multiplied by 10,000 and transformed to log space. Only genes 
detected in >10 cells were retained. Cells with a relatively high percentage of UMIs 
mapped to mitochondrial genes (≥5%) were discarded. Cells with fewer than 500 
or more than 5,000 detected genes were also removed.

For mouse cortical neurons (Fig. 2a), we used Seurat (v2.3.4)41 for downstream 
analysis. After removing low quality cells, 20,547 mouse cortical cells were 
retained. HVGs were identified using the function FindVariableGenes in Seurat 
with the parameters x.low.cutoff = 0.05 and y.cutoff = 0.5, resulting in 2,290 HVGs. 
The expression level of HVGs in the cells was scaled and centered for each gene 
across cells and was subjected to PCA. The most significant 30 PCs were selected 
and used for two-dimension reduction by UMAP42 in Seurat with the default 
parameters. Clusters were identified using the function FindCluster in Seurat with 
the resolution parameter set to 1. To identify major cell types, we merged adjacent 
clusters in UMAP that showed high expression levels of excitatory neuronal 
markers (Neurod2 and Neurod6) and defined it as the ‘Ex’ cluster.

For the RNA-decay experiment (Fig. 4b), 20,190 cells were kept for 
downstream analysis after quality filtering. Seurat 3 (v3.1.4)43 was used to align 
cells from different time points. The top 2,000 HVGs were identified using the 
function FindVariableFeatures with the vst method. Canonical correlation analysis 
(CCA) was used to identify common sources of variation among different time 
points. The first 30 dimensions of the CCA were chosen for integration. The 
expression levels of HVGs were then scaled and centered for each gene across 
cells, and PCA was performed on the scaled data. The 20 most significant PCs 
were selected and used for two-dimension reduction by UMAP. Clusters were 
identified using the function FindCluster in Seurat with the resolution parameter 
set to 2. After UMAP projection, a small cell cluster (n = 131 cells, 0.65% of 
input cells) was identified as ‘partially differentiated mESCs’ based on previously 
identified markers (Cryab, S100a6, Thbs1, Krt7, Gsn, Krt19 and Krt8)23 and was 
thus excluded. Adjacent clusters with high levels of Sox2 were combined to a single 
‘pluripotent’ state cluster. Thus, 20,059 cells were assigned to three principal stem 
cell states (pluripotent, intermediate and 2C-like). Cell-type-specific markers were 
identified using the function FindMarkers in Seurat with a two-sided Wilcoxon 
rank-sum test with default parameters.

To enable directly comparative analyses within cell states between WT and 
Tet-TKO mESCs (Fig. 5d), we used Seurat 3 (v3.0.0.9000) to perform joint analysis. 
After quality filtering, 4,633 WT cells and 2,319 Tet-TKO cells were retained. The 
top 2,000 HVGs were identified using the function FindVariableFeatures with the 
vst method. CCA was used to identify common sources of variation between WT 
and Tet-TKO cells. The first 20 dimensions of the CCA were chosen to integrate 
the two datasets. After integration, the expression level of HVGs in the cells was 
scaled and centered for each gene across cells, and PCA analysis was performed 

on the scaled data. The 20 most significant PCs were selected and used for 
two-dimension reduction by UMAP. Clusters were identified using the function 
FindCluster in Seurat with the resolution parameter set to 3. As aforementioned, 
adjacent clusters with high expression levels of Sox2 were combined to a single 
pluripotent cluster.

Estimation of the fraction of newly synthesized transcripts. Current metabolic 
labeling strategy typically results in incomplete 4sU labeling of all newly 
transcribed RNAs in single cells7,8. To overcome this issue, we adapted a binomial 
mixture model-based statistical correction strategy5,44 and optimized it for 
UMI-based scNT-seq datasets. For each experiment, the data were modeled as 
the mixture of two binomial distributions to approximate the number of T-to-C 
substitutions yi for each gene transcript i, with its likelihood function as

f θ; p; qð Þ ¼ θ Binomðyi; p; niÞ þ 1� θð ÞBinomðyi; q; niÞ

where θ is the fraction of new transcripts in each experiment, p and q are 
the probabilities of a T-to-C substitution at each nucleotide for new and old 
transcripts, respectively, and ni is the number of uridine nucleotides observed in 
the transcript i. A consensus sequence for each transcript is built by pooling reads 
with the same UMI index and taking the most frequent variant at each position. 
10,000 UMIs were randomly sampled and the global substitution probabilities 
p and q were estimated based on the above mixture model. The model was fit 
by maximizing the likelihood function using the Nelder–Mead algorithm. The 
optimization was repeated ten times with random initialization values for θ, p, and 
q in the range [0,1], keeping the best fit with θ∈[0,1].

To obtain enough UMIs for global parameters estimation at each time point 
of mouse cortical neuronal culture datasets, four inhibitory neuronal clusters (Inh 
2–4 and Inh-NP) were combined based on transcriptomic similarity, and three 
non-neuronal clusters (Ex-NP1, Ex-NP2 and RG) were also aggregated. Thus, 
four major cell clusters (Ex, Inh1 and two combined clusters) were subjected to 
statistical modeling separately. For mESC datasets, we assumed that Tet-TKO 
would not affect 4sU incorporation rate and thus combined WT and Tet-TKO 
datasets to estimate unified global parameters, p and q, for three stem cell states 
(pluripotent, intermediate and 2C-like). In sum, 20 sets of p and q (5 time points 
× 4 combined clusters) were determined in cortical neuronal datasets and 3 sets of 
p and q (pluripotent, intermediate and 2C-like clusters) were estimated for mESC 
datasets. These global parameters were then used to estimate the fraction of new 
transcripts.

Computing aggregated new transcripts for each cell type or state. For Fig. 2c and 
Extended Data Fig. 3d, we aggregate all the UMIs belonging to the same cell type 
and estimated the fraction of new transcripts θ for each gene with >100 UMIs in 
that cell type at each time point. The likelihood function for the mixture model 
above was maximized using the Brent algorithm with the constraint θ∈[10−8,1]. 
The 95% confidence interval was calculated from the Hessian matrix, and θ 
estimates for genes with a confidence interval greater than 0.2 were removed. The 
level of new transcript (N) was then estimated:

N ¼ θðLþ UÞ

where θ is the fraction of newly transcribed RNAs for a gene in a cell type, L is 
the number of labeled transcripts of a gene and U is the number of unlabeled 
transcripts of a gene. The level of old transcript was calculated by (1 − θ)(L + U).

Computing new transcripts in single cells. While the fraction of new transcripts 
could theoretically be estimated for each gene in single cells using the 
aforementioned statistical correction model, due to limited sequencing coverage 
for single-cell transcriptomes, modeling every gene for tens of thousands of cells 
was not experimentally feasible and computationally inefficient. We noticed that 
most genes exhibited a highly similar detection rate, α (the ratio between observed 
and corrected new RNA levels), in aggregated scNT-seq datasets (Extended Data 
Fig. 3d). Under the assumption that 4sU labeling of new transcripts in each cell 
is largely a stochastic process and may vary between cells, the global metabolic 
labeling rate in each cell can also provide a good approximation as a binomial 
process; therefore, the mean detection rate α of all genes can be estimated for 
each cell using the same aforementioned statistical model. The single-cell level 
detection rate α can be computed by dividing all the labeled transcripts of a cell 
by the statistically estimated new transcripts of that cell. After removing cells 
with out-of-range values (α > 1), we successfully computed the detection rate α 
for 88.3% (18,133 of 20,547) of mouse cortical cells and 95.1% (6,609 of 6,952) of 
mESCs. The mean detection rates were 60% and 66% in cortical cells and mESCs, 
respectively. For each gene, the new RNA level was computed as

N ¼ min
L
α
; Lþ Uð Þ

� �

where α is the new RNA detection rate of a cell, L is the number of labeled 
transcripts of a gene in that cell and U is the number of unlabeled transcripts 
of a gene. The number of pre-existing transcripts was calculated by L + U − N. 
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The computed new and old transcripts were used for all downstream single-cell 
analyses, including SCENIC-based single-cell regulon/GRN activity analysis (Figs. 
2d,e and 5c) and RNA velocity analysis (Fig. 3 and Extended Data Figs. 4–6).

GO enrichment analysis. To identify functional categories associated with defined 
gene lists, GO annotations were downloaded from the Ensembl database. An 
enrichment analysis was performed via a hypergeometric test. The P value was 
calculated using the following formula:

P ¼ 1�
Xm�1

i¼0

M
i

� 
N�M
n�i

� 

N
n

� 

where N is the total number of background genes, n is the total number of selected 
genes, M is the number of genes annotated to a certain GO term and i is the 
number of selected genes annotated to a certain GO term. P values were corrected 
using the function p.adjust with FDR correction in R. GO terms with FDR < 0.05 
were considered enriched. All statistical calculations were performed in R.

For enrichment analysis of stable/unstable mRNAs (Extended Data Fig. 8b), 
genes were ranked by the RNA half-life. The top 10% of genes with the longest 
half-lives were defined as stable genes, whereas the bottom 10% of genes with the 
shortest half-lives were considered as unstable. Then, the stable and unstable gene 
sets were subjected to GO enrichment analysis. For Extended Data Fig. 9b, genes 
showing >1.5-fold change between pluripotent and 2C-like states were selected 
and subjected to GO enrichment analysis. For Fig. 5g, significantly differentially 
expressed genes between WT and Tet-TKO mESCs (adjusted P value < 0.05) were 
subjected to GO enrichment analysis.

Identification of differentially expressed genes. Differential gene expression 
analysis of new transcripts between different time points of neuronal activation 
(15, 30, 60 and 120 min) and control (0 min) was performed with the FindMarkers 
function in Seurat using a two-sided Wilcoxon rank-sum test. New transcripts 
with a fold change > 1.5 and an adjusted P value < 0.05 (Bonferroni corrected) 
were considered to be differentially expressed. Neuronal activity-induced genes 
were further identified if a new transcript was significantly increased in at least one 
time point with KCl stimulation in at least one cell type (Extended Data Fig. 2d). 
For MA-plots in Extended Data Fig. 9a, genes showing a >1.5-fold change of new 
or old RNA expression between pluripotent and 2C-like states were considered 
differentially expressed. For comparison between WT and Tet-TKO mESCs among 
three stem cell states (Fig. 5f), two-sided Wilcoxon rank-sum test was used to assess 
significance of the difference, and the P value was adjusted by Bonferroni correction. 
Genes with an adjusted P value < 0.05 were considered as differentially expressed.

Estimation of RNA half-life. For each gene, we separately aggregated labeled and 
unlabeled UMI counts in each cell state (Fig. 4 and Extended Data Fig. 8). Then, 
the fraction of labeled transcripts was calculated with summed labeled UMI counts 
divided by total UMI counts (labeled and unlabeled). The fractions of labeled 
transcripts were corrected for doubling time (14.8 h) and normalized to 0 h of 
chase. The R function nls was used to perform curve fitting with the parameters set 
to ‘y ~ I(a*exp(-b*x))’, ‘start = list(a = 1, b = 0)’ and ‘na.action = na.exclude’. We kept 
the goodness of fit as R2 > 0.4. After filtering out genes expressed in <5% of cells, 
we determined the RNA half-lives of 1,926 genes that are also commonly detected 
in bulk SLAM-seq assays4.

Splicing kinetics-based RNA velocity analysis. For standard RNA velocity 
analysis (splicing RNA velocity), we first generated the bam files using the 
Drop-seq analysis pipeline (v1.1.2). The reads were demultiplexed using dropEst45 
(v0.8.5) pipeline, with ‘-m -V -b -f -L eiEIBA’ to annotate bam files. The genome 
annotations (mm10; Gencode release vM13) were used to count spliced and 
unspliced molecules for each experiment. Dynamo22 (https://github.com/
aristoteleo/dynamo-release/; commit: 9871d78) was then used for RNA velocity 
analysis. To specifically reveal the neuronal activity-dependent RNA dynamics, we 
provided dynamo with the unspliced and spliced counts of 97 neuronal activity 
genes as features (Extended Data Fig. 2d and Supplementary Table 2) for PCA 
denoising, followed by UMAP projection. The estimation assumption and model 
were set to ‘steady states’ and ‘stochastic’, respectively. The high-dimensional 
velocity vectors were projected to two-dimensional UMAP space and visualized 
with the streamline plot using dynamo with default parameters. Similarly, phase 
diagrams and randomized streamline plots of velocity vectors were generated using 
dynamo with default settings (Fig. 3a and Extended Data Figs. 4 and 5).

Metabolic labeling-based RNA velocity analysis. The original RNA velocity 
described by La Manno et al.20 is defined as the rate of changes in spliced mRNAs 
over time or dsdt ¼ _s ¼ βu� γs

I
 (s and u are the abundance of spliced and unspliced 

mRNAs in a single cell measured by scRNA-seq, respectively; β and γ are RNA 
splicing or degradation rates, respectively, while t is the time). To estimate 
splicing-based RNA velocity, La Manno et al. assumed a constant splicing rate β = 1 
that enabled the identifiability of γ when cells are at steady states (when the RNA 
velocity is 0); that is:

_s ¼ 0 ¼ βu� γs; where β¼ 1:

At steady states, u = γs and γ can be estimated by linear regression of the 
expression of spliced and unspliced transcripts s and u for each gene. For 
simplicity, La Manno et al. regarded cells with extreme expressions (that is, the 
top or bottom five percentiles of all gene expression) as steady-state cells. In the 
scSLAM-seq study7, the authors replaced unspliced and spliced counts with new 
and total RNA to compute a new form of RNA velocity that they denoted as NTR 
velocity. However, as discussed below, NTR velocity analysis is only valid under 
specific metabolic labeling conditions.

To compute a metabolic labeling-based RNA velocity that is generally 
applicable, we used dynamo, which explicitly models metabolic labeling of newly 
synthesized transcripts. We denoted n and r as the new (metabolic labelled RNAs) 
and total RNA abundance for each gene in each cell, respectively. The velocity of 
new and total RNA can then be

_n ¼ α� γn;

_γ ¼ α� γr:

Here, α is the transcription rate (or RNA synthesis rate), while γ is the degradation 
rate. By solving the differential equation related to new RNA velocity, we have

n ¼ α

γ
1� e�γtð Þ:

After some arrangement, the transcription rate can be further written as

α ¼ nγ
1� e�γt

 n
t
:

The above approximation is derived from the fact that, by Taylor expansion, 
e−γt ≈ 1 − γt. Thus, the velocity for the total RNA is

_r ¼ n
t
� γr:

If we replace new RNA as the unspliced RNA, and total RNA as the spliced 
RNA as described for NTR velocity, we have

_s ¼ u
t
� γs:

Interestingly, if t is around 1 h (which is the case for scSLAM-seq7 and  
our study), we can have _s ¼ u� γs

I
, the same equation used by the original  

RNA velocity. Thus, the NTR velocity is an approximation of the total  
RNA velocity.

In the dynamo model22, the NTR velocity is extended so that it is not 
conditioned on that t ≈ 1, using the same steady-state assumption. At the steady 
states, denoting the slope of the regression line of the NTR velocity as k, we have

rss ¼
α

γ
;

n ¼ k rss:

Thus, we have n ¼ α
γ 1� e�γtð Þ ¼ rssð1� e�γtÞ

I
, which leads to k = (1 − e−γt). 

Therefore, we can calculate γ and α as

γ ¼ � ln 1� kð Þ
t

;

α ¼ γn
k
:

We used the above the equations to calculate the ‘time-resolved dynamo RNA 
velocity’ _γ:

_γ ¼ �lnð1� kÞ
kt

nþ lnð1� kÞ
t

γ ) �kt
ln 1� kð Þ _r ¼ n� kr:

The above result implies that the time-resolved dynamo RNA velocity for each  
gene scales to the NTR velocity via a gene-specific factor �kt

lnð1�kÞ
I

. This suggests  
that even when t ≠ 1, the NTR velocity is still informative if k does not substantially 
differ across genes. However, NTR velocity lacks physical meaning of how  
many molecules change per unit time. In our time-resolved dynamo RNA  
velocity implementation, the thickness of directional streamlines in the locally 
averaged vector field indicates RNA velocity rate (molecules per unit time). 
Specifically, the new and total RNA counts are provided as input to dynamo, and 
the labeling time is also explicitly supplied for calculating metabolic labeling-based 
time-resolved RNA velocity (Fig. 3a and Extended Data Figs. 4 and 5). For  
Fig. 3a and Extended Data Fig. 4a, permutation of velocity flows was performed  
by shuffling the velocity for genes in each cell and then randomly flipping the sign 
of shuffled velocity values.
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Estimation of RNA biogenesis rate and degradation rate constant. The 
degradation rate constant (γ, units/h) can be calculated from RNA half-life (t1/2) 
using

γ ¼ ln 2ð Þ
t1=2

:

Then, we assumed the gene-specific RNA biogenesis rate (α, molecules/h) is a 
constant for all cells from each cell state, which can then be calculated using

α ¼ nγ
1� e�γt

where n is the average labeled RNA abundance for each gene in each state 
(pluripotent, intermediate or 2C-like), γ is the degradation rate constant in each 
state and t (units in h) is the metabolic labeling time.

To define gene-specific RNA regulatory strategies for the transition from 
pluripotent to intermediate and 2C-like states in mESCs (Fig. 4e), we computed the 
Pearson correlation coefficient r between the degradation rate and transcription 
rate constant. To determine the RNA regulatory strategy as previously described29, 
we defined genes with a strong negative Pearson correlation coefficient (r ≤ −0.5) 
as a cooperative strategy, a strong positive Pearson correlation coefficient 
(r ≥ 0.5) as a destabilizing strategy and a moderate Pearson correlation coefficient 
(−0.5 < r < 0.5) as a neutral strategy.

Analysis of single-cell regulon activity using new and old RNAs. To assess the 
regulatory activity of TFs associated with different cell states or cell types, we 
used SCENIC18 (v1.1.2.2) to perform single-cell GRN or regulon activity analysis. 
Regulatory modules are identified by inferring coexpression between TFs and 
genes containing a TF-binding motif in their promoters. We first separated the 
expression matrix into two parts based on the expression level of new and old 
transcripts, then provided them as inputs to SCENIC analysis, which enabled 
us to identify specific regulatory modules associated with either new or old 
transcriptomes from the same cell. Two gene-motif rankings, 10 kb around 
the transcription start site and 500 bp upstream, were loaded from RcisTarget 
databases (mm9). Genes detected in >1% of all cells and listed in the gene-motif 
ranking databases were retained. To this end, 8,744 genes in mouse cortical 
neuronal culture datasets and 9,388 genes in mESC datasets were subjected to 
downstream analysis. Then, GRNBoost (implemented in pySCENIC) was used to 
infer the coexpression modules and to quantify the weight between TFs and target 
genes. Targets genes that did not show a positive correlation (>0.03) in each TF 
module were discarded. SCENIC identified 4,944 and 5,406 TF modules in mouse 
cortical neuronal culture and mESC datasets, respectively. The cis-regulatory motif 
analysis on each of the TF modules using RcisTarget revealed 277 and 325 regulons 
in cortical culture and mESC datasets, respectively. The top 1% of the number of 
detected genes per cell was used to calculate the enrichment of each regulon in 
each cell. For Figs. 2d and 5c, we computed the mean area under the curve (AUC) 
of all cells belonging to defined groups, and then scaled the mean AUC using the 
scale function in R. The R package pheatmap was used to generate the heat map. 
For Fig. 3d and Extended Data Fig. 4c, AUC values of TF regulons of each cell were 
quantified by SCENIC and projected to UMAP plots.

For Fig. 2d,e, AUC values of TFs inferred from new RNAs were obtained and 
then subjected to a two-sided Wilcoxon rank-sum test to assess the significance of 
the difference in TF activity. TFs with a fold change of mean AUC value > 1.5 and 
an adjusted P value < 0.05 (Bonferroni corrected) were considered differentially 
regulated after KCl stimulation in at least one cell type. For Fig. 5c, AUC values 
of TFs inferred from new or old RNAs were obtained and then subjected to a 
two-sided Wilcoxon rank-sum test to assess the significance of the difference of 
TF activity. TFs with a fold change > 1.25 and an adjusted P value < 0.05 were 
considered differentially regulated. Notably, we did not identify the regulon activity 
of Zscan4 in 2C-like cells, potentially due to the lack of Zscan4 motif information 
in the SCENIC database.

Data visualization. All plots were generated using the ggplot2 (v3.3.0), cowplot 
(v1.0.0) and pheatmap (v1.0.12) packages in R (v3.5.1). In the box plots, the boxes 
display the median (center line) and interquartile range (from the 25th to 75th 
percentile), the whiskers represent 1.5 times the interquartile range and the circles 
represent outliers. In the violin plots, the gray line on each side is a kernel density 
estimation to show the distribution shape of the data; wider sections of  
the plot represent a higher probability, while the thinner sections represent  
a lower probability.

Statistics. Statistical analyses were performed using R. Statistical details for each 
experiment are also provided in the figure legends.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All sequencing data associated with this study have been deposited in the Gene 
Expression Omnibus (GEO) database under accession code GSE141851. Source 
data are provided with this paper.

Code availability
The analysis source code underlying the final version of this paper are available on 
the GitHub repository (https://github.com/wulabupenn/scNT-seq/).
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Extended Data Fig. 1 | See next page for caption.
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Extended Data Fig. 1 | Performance and quality control analyses of scNT-seq. a. Scatterplots showing the number of detected gene per cell (y-axis, upper 
panel) or UMI per cell (y-axis, lower panel) as a function of aligned reads per cell (x-axis) between 4sU (red, 462 cells), TFEA (blue, 211 cells), and 4sU/
TFEA (green, 578 cells) experiments. 4sU, cells labeled with 4sU (100 μM, 4 hours (h)). TFEA, beads treated with TFEA/NaIO4 chemical reaction. 4sU/
TFEA, cells labeled with 4sU and beads treated with TFEA/NaIO4 chemical reaction. The fitted lines of different experiments were shown. The estimated 
numbers of gene or UMI detected per cell at matching sequencing depth (50,000 aligned read per cell) are shown on the right. b. Shown are all transcripts 
(with unique UMIs) for the ACTG1 gene from one untreated control K562 cell (upper panel) and one TFEA/NaIO4-treated cell (lower panel). Grey circles 
denote uridine sites without T-to-C substitution, and “X”s denote sites with T-to-C substitutions. The read coverage for each T-to-C substitution is 
color-scaled. All 9 sequencing reads of the 2nd UMI (in red box) from the TFEA/NaIO4-treated cell are highlighted below. c. Bar plot showing nucleotide 
substitution rates in mESCs with different labeling parameters (100 μM 4sU for 4 h or 200 μM 4sU for 24 h) and sample processing methods (freshly 
isolated versus methanol fixation followed by cyro-preservation and rehydration with two different rehydration buffers: PBS-based versus SSC-based). A 
sample (100 μM 4sU for 4 h) that was not treated with TFEA/NaIO4 served as the control. d. Scatterplots showing Pearson’s correlation between two 
biologically independent replicates of mESCs (rep1: 427 cells and rep2: 733 cells). The expression levels of new (n = 10,925 genes) and old (n = 14,496 
genes) transcripts were quantified as natural log transformation of (TP10K + 1).
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Extended Data Fig. 2 | See next page for caption.
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Extended Data Fig. 2 | Cell-type clustering and analysis of activity-dependent gene expression programs in mouse cortical neuronal cultures. a. 
Experimental scheme of characterizing neuronal activation in primary mouse cortical cultures with scNT-seq. Cells were treated with KCl from 15 min 
to 120 min. Cells from all treatment conditions were labeled with 4sU for 2 h before harvest for scNT-seq. b. Left, UMAP plot for 20,547 cells from 
mouse cortical cultures (the same UMAP plot in Fig. 2a). The cells are colored by different time points of neuronal activation. Right, violin plot showing 
the distribution of total RNA levels for representative cell-type specific marker genes. c. Clustered heat map showing new RNA levels (z-scaled natural 
log transformation of (TP10K + 1)) of neuronal activity induced genes across different cell-types. d. Clustered heat map showing new RNA levels 
(z-scaled natural log transformation of (TP10K + 1)) of early- and late-response genes in excitatory neurons with different durations of KCl stimulation. 
97 significantly induced genes were clustered into two groups (early- and late-response). The expression levels of early- and late-response genes are 
in Supplementary Table 2. e. Venn diagram showing a significant overlap between Maff and Fosb regulon targets (243 genes, P-value = 1.64 x 10-164, 
Two-sided Fisher’s exact test).
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Extended Data Fig. 3 | See next page for caption.
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Extended Data Fig. 3 | UMI-based statistical correction of newly-transcribed RNA fraction. a. Density plot showing the distribution of number of covered 
uridine sites per read (60 bp) or per UMI (UMI-linked transcript) in excitatory neurons with 60 min of KCl stimulation. b. Bar plot of the number of T-to-C 
substitutions per read (60 bp) or UMI. Shown is the analysis of excitatory neurons with 60 min of KCl stimulation. c. Shown are all unique transcripts (with 
unique UMIs) of the Fos (an activity-induced gene) and Mapt (a slow turnover housekeeping gene) from a single excitatory neuron with 60 min of KCl 
stimulation. Grey circles represent uridines without T-to-C conversion, while crosses (“X”s) denote uridines with T-to-C substitution in at least one read. 
The read coverage for each T-to-C substitution is color-scaled. d. Comparison of uncorrected and statistically corrected new RNA levels of each detected 
gene (n=9,082 genes) in excitatory neurons (with 60 min of KCl stimulation). Four representative activity-induced genes (Fos, Jun, Egr1, and Npas4) and 
two housekeeping genes (Mapt and Actb) are highlighted with red circles. e. Scatter plot showing the new transcript fraction (over total RNAs; y-axis) of 
excitatory neurons with 60 min of KCl stimulation as a function of differential gene expression (between 60 min and 0 min of KCl stimulation; x-axis). 
Two-sided Wilcoxon rank sum test was used to assess significance of the difference, and the P-value was adjusted by Bonferroni correction. Genes were 
color-coded by statistical significance of differential gene expression. The fraction of new transcripts, expression fold-change, and adjusted P-value of each 
gene are in Source Data Extended Data Fig. 3.
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Extended Data Fig. 4 | scNT-seq enables metabolic labeling-based time-resolved RNA velocity in excitatory neurons. a. UMAP visualization of 
excitatory neurons (13,511 cells, with >500 genes detected per cell) that were characterized by standard splicing kinetics-based (left) or metabolic 
labeling based RNA velocity (right) analyses. Cells are color-coded by time points. The streamlines indicate the integration paths that connect local 
projections from the observed state to extrapolated future state. The thickness of streamline indicates the magnitude of velocity. UMAP plots in lower 
panels (same as upper panels) show randomized velocity controls for splicing (left) or metabolic labeling (right) based RNA velocity. Permutation of 
velocity flows was performed by shuffling velocity for genes in each cell and then randomly flipping the sign of shuffled velocity values. b. UMAP (same as 
right of a) visualization of Ex neurons colored by the average new RNA expression level (natural log transformation of (TP10K + 1)) of 24 early- (left) or 73 
late-response (right) genes. c. UMAP (same as right of a) showing Ex neurons colored by the regulon activity of three representative TFs (Jun, Mef2d, and 
Maff).
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Extended Data Fig. 5 | See next page for caption.
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Extended Data Fig. 5 | Comparison of splicing-based and metabolic labeling-based RNA velocity analysis methods. The excitatory neurons (n=3,066 
cells, with >2,000 genes detected per cell) were analyzed by either splicing kinetics-based a, or metabolic labeling-based b, RNA velocity. Shown are the 
phase portraits (left), UMAP plots colored by smoothed spliced (in a) or total (in b) RNA level based on local averaging (middle), and RNA velocity values 
(right) of three representative activity-induced genes (Egr1, Fos and Homer1).
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Extended Data Fig. 6 | Quality control for metabolic labeling based RNA velocity analysis. a. UMAP (as in right panels of Fig. 3a) visualization of 
high-quality Ex neurons (3,066 cells, >2,000 genes detected per cell) colored by time points (left), number of gene detected (middle), and number of 
UMI detected per cell (right). b. UMAP (as in right panels of Fig. 3a) visualization of high-quality Ex neurons colored by the new RNA levels (natural log 
transformation of (TP10K + 1)) of six representative genes, including three early-response genes (Egr1, Fos, Jun) and three late-response genes (Homer1, 
Gadd45g, Nr4a2). c. UMAP (as in right panels of Extended Data Fig. 4a) visualization of all Ex neurons (13,511 cells, >500 genes detected per cell) colored 
by time points (left), number of gene detected (middle), and number of UMI detected per cell (right). d. UMAP (as in right panels of Extended Data Fig. 
4a) visualization of all Ex neurons colored by the new RNA levels (natural log transformation of (TP10K + 1)) of six representative genes (same as in b).
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Extended Data Fig. 7 | scNT-seq reveals different stem cell states in mESC cultures. a. UMAP visualization of 4,633 WT cells (from two biological 
replicates) colored by different cell-types or cell-states. Feeders are contaminating mouse embryonic fibroblasts. b. UMAP visualization of two biological 
replicates in (a). c. Violin plots showing total RNA levels (natural log transformation of (TP10K + 1)) of representative marker genes for feeders or 
specific stem cell states. d. UMAP (same as in (a)) visualization of cells colored by total RNA levels (natural log transformation of (TP10K + 1)) of four 
representative marker genes. e. Violin plots showing both new and old RNA levels (natural log transformation of (TP10K + 1)) of selected genes across 
three stem cell states.
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Extended Data Fig. 8 | See next page for caption.
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Extended Data Fig. 8 | Pulse-chase scNT-seq reveals state-specific mRNA half-life. a. Violin plots showing levels of labeled and total transcripts of 
two representative genes (Sox2 and Top2a) during pulse-chase assay. The expression level is measured in natural log transformation of (TP10K + 1). b. 
Enrichment analysis of GO terms within stable (top 10% genes with longest half-lives) and unstable genes (top 10% genes with shortest half-life) in 
pluripotent state mESCs. Enrichment analysis was performed via a one-sided hypergeometric test. P-value was then corrected by FDR. The P-values 
of GO terms are in Source Data Extended Data Fig. 8. c. Clustered heat map showing the mRNA half-life of 2,616 genes across three stem cell states. 
These genes are clustered to six groups based on the scaled RNA half-lives in three cell states. The state-specific half-lives are in Supplementary Table 
4. d. Shown are mRNA decay curves of representative genes from each group. The fraction of labeled transcripts was calculated for each time point and 
normalized to chase (0 h), then fit to a single-exponential decay model to derive RNA half-lives (t1/2).

Nature Methods | www.nature.com/naturemethods

http://www.nature.com/naturemethods


ArticlesNATURE METHoDS

Extended Data Fig. 9 | See next page for caption.
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Extended Data Fig. 9 | scNT-seq analysis of the pluripotent-to-2C transition in mESCs. a. Scatter MA-plot showing differential expression of new, old, 
and total RNAs between pluripotent and 2C-like states. Dashed line denotes 1.5-fold change between states. b. Heat map showing enriched GO terms 
for state-specific genes. Significance of enrichment (FDR) is scaled by colors. Enrichment analysis was performed using a one-sided hypergeometric 
test. P-value was then corrected by FDR. The exact P-values of GO terms are in Source Data Extended Data Fig. 9. c. Normalized new and old RNA levels 
(natural log transformation of (TP10K + 1)) of major DNA methylation regulators across three stem cell states. d. Validation of genotypes of the Tet1 
(-11bp/+1bp) and Tet2 (-7bp/-1bp) genes in Tet-TKO cells by aligning scNT-seq reads to the CRISPR-Cas9 genome editing sites. e. UMAP visualization 
(same as in Fig. 5d) of mESCs colored by cell-cycle states (left) or the new RNA level (natural log transformation of (TP10K + 1)) of Zscan4a (right). f. 
Venn diagrams showing significant overlap between Tet1 and Myc regulon target genes (upper) (P-value = 2.42 x 10-25, two-sided Fisher’s exact test), and 
between Tet1 and Max regulon target genes (lower) (P-value = 1.96 x 10-62, two-sided Fisher’s exact test).
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Extended Data Fig. 10 | See next page for caption.
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Extended Data Fig. 10 | Benchmarking the 2nd SS scNT-seq protocol in human K562 cells. a. Bar plot showing nucleotide substitution rates in K562 cells 
analyzed with different experimental protocols. 4sU, metabolic labeling with 4sU (100 μM, 4 h); TFEA, on-bead TFEA/NaIO4 chemical reaction; 2nd SS, 
second strand synthesis. b. PCA plots showing K562 cells colored by the total RNA level of the TOP2A gene (natural log transformation of (TP10K + 1)) 
in three experimental protocols (same as in Fig. 6d). c. Violin plots showing the new-to-total RNA ratios of 8 representative cell-cycle genes in datasets 
generated by 2nd SS (4sU/TFEA/2nd SS, n =795 cells) or standard (4sU/TFEA, n = 533 cell) scNT-seq protocols. See ‘Data visualization’ in the Methods 
for definitions of box-plot elements. d. Same as in c but showing new and old RNA levels (natural log transformation of (TP10K + 1)) in three cell-cycle 
states (G1/S/G2M).
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Reporting Summary
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in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistics
For all statistical analyses, confirm that the following items are present in the figure legend, table legend, main text, or Methods section.

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

A statement on whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection No software was used for data collection.

Data analysis STAR (version 2.5.2a), sam2tsv (version ec2c2364), Drop-Seq analysis pipeline (version 1.1.2). Seurat (version 2.3.4, 3.0.0 and 3.1.4), 
dropEst (version 0.8.5), SCENIC (version 1.1.2.2), dynamo (https://github.com/aristoteleo/dynamo-release, commit:9871d78), R (version 
3.5.1), R packages: ggplot2 (version 3.3.0), cowplot (version 1.0.0), dplyr (version 0.8.5), tidyr (version 1.0.2), reshape2 (version 1.4.3), 
pheatmap (version 1.0.12), RColorBrewer (version 1.1.2), MASS (version 7.3.51.5), viridis (version 0.5.1). All scripts for figure generation 
are available at https://github.com/wulabupenn/scNT-seq.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers. 
We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

Raw and processed data have been deposited in NCBl Gene Expression Omnibus (GEO) database under accession number GSE141851.
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical procedures were used to select a sample size, but rather, cell numbers typically used in the field were 
used based on previous studies (Macosko et al, 2015, Cell; Hu et al, 2017, Mol Cell). More than 400 cells were used for two-species mixing 
experiment. More than 2,000 cells were profiled at each time-point for cortical neuronal culture and mESC pulse-chase experiments. 4,633 
WT cells and 2,319 Tet-TKO cells were profiled after 4 hour labeling (from two biological replicates). More than 400 cells were profiled at each 
of 6 experiments for benchmarking the library complexity of second strand synthesis scNT-Seq protocol. 

Data exclusions Data were not excluded.

Replication Two biologically independent replicates were included for mESC scNT-Seq experiments (wild-type and Tet-TKO). For mESC pulse-chase 
experiments, two biologically independent replicates were performed. For other large-scale, high-throughput sequencing datasets, no 
replication was performed for reasons of cost. Reproducibility of scNT-Seq is accessed in Fig. 5e, Extended Data Fig. 1c and 6b.

Randomization For estimation the fraction of new transcripts (θ) in each experiment, we randomly sampled 10,000 UMIs to estimate global substitution 
probabilities p and q based on the binomial mixture model. For PCA analysis of new RNAs, old RNAs, total RNAs and new-to-total RNA ratios, 
200 excitatory neurons or non-neuronal cells were randomly sampled from each of two time points. No other randomization strategies were 
applied.

Blinding Not applied. Blinding was not relevant since sample identities were encoded into experiment design, and then subjected to scNT-Seq analysis.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) K562 (ATCC, CCL-243) and wild-type mESC line (J1, ATCC, SCRC-1010) were originally purchased from ATCC. Tet-TKO mESC 
(J1) line was derived in house by CRISPR-Cas9 genome edited using previously validated sgRNAs (Wang et al, Cell, 2013). The 
Tet-TKO mESC line was verified as noted below. 

Authentication Genotypes of Tet-TKO mESCs (J1) were verified by both Sanger sequencing and single-cell RNA-seq at Tet1/2/3 loci. The lack 
of 5-hydroxymethylcytosine (5hmC) was confirmed by mass spectrometry as previously described (Schutsky et al, Nat 
Biotech, 2018). K562 (ATCC, CCL-243) and wild-type mESC (J1 line, ATCC, SCRC-1010) were originally obtained from ATCC and 
no additional authentication was performed. 

Mycoplasma contamination Not tested.

Commonly misidentified lines
(See ICLAC register)

No commonly misidentified cell lines were used.
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Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Embryonic day 16 (E16) C57BL/6 embryos of mixed sex (Charles River).

Wild animals This study did not involve wild animals.

Field-collected samples This study did not involve field-collected samples.

Ethics oversight Experiments were conducted in accordance with the ethical guidelines of the National Institutes of Health and with the approval 
of the Institutional Animal Care and Use Committee of the University of Pennsylvania. Animals were solely used for collection of 
material, and no animal experiments were performed.

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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