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Abstract

The time-resolved scRNA-seq (tscRNA-seq) provides the possibility to infer physically

meaningful kinetic parameters, e.g., the transcription, splicing or RNA degradation rate con-

stants with correct magnitudes, and RNA velocities by incorporating temporal information.

Previous approaches utilizing the deterministic dynamics and steady-state assumption on

gene expression states are insufficient to achieve favorable results for the data involving

transient process. We present a dynamical approach, Storm (Stochastic models of RNA

metabolic-labeling), to overcome these limitations by solving stochastic differential equa-

tions of gene expression dynamics. The derivation reveals that the new mRNA sequencing

data obeys different types of cell-specific Poisson distributions when jointly considering both

biological and cell-specific technical noise. Storm deals with measured counts data directly

and extends the RNA velocity methodology based on metabolic labeling scRNA-seq data to

transient stochastic systems. Furthermore, we relax the constant parameter assumption

over genes/cells to obtain gene-cell-specific transcription/splicing rates and gene-specific

degradation rates, thus revealing time-dependent and cell-state-specific transcriptional reg-

ulations. Storm will facilitate the study of the statistical properties of tscRNA-seq data, even-

tually advancing our understanding of the dynamic transcription regulation during

development and disease.

Author summary

Intricate regulation of RNA biogenesis, such as RNA transcription, splicing and degrada-

tion, plays a critical role in most biological processes. Previous approaches have leveraged

a deterministic model of spliced and unspliced RNAs to estimate kinetic parameters and

quantify RNA velocity, the rate of changes in gene expression states in single cells. How-

ever, accurately estimating meaningful kinetic parameters and RNA velocity is hindered
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by biased capture of unspliced RNA and absence of temporal information in conventional

scRNA-seq. Significant advances have been made in better measuring RNA kinetics with

metabolic labeling enabled scRNA-seq, however, computational tools to analyze them lag

far behind. Prior work of Dynamo provides one of the early solutions to properly model

RNA metabolic labeling data, but its method still largely uses a deterministic model that

only utilizes part of extreme cells and is unable to analyze datasets with significant tran-

sient dynamics. To address these challenges, we developed Storm that explicitly models

transient stochastic RNA dynamics. Importantly, Storm models RNA kinetics with sto-

chastic differential equations that explicitly account for biological and cell-specific noises.

Storm is generally applicable to many metabolic labeling scRNA-seq datasets and we dem-

onstrate excellent performance of Storm in fitting the data to capture the transient dynam-

ics under various noise models.

Introduction

Cells are dynamic identities that are subject to intricate transcriptional and post-transcrip-

tional regulations. Understanding the tight regulation of the RNA life cycle will shed light on

not only the regulatory mechanism of RNA biogenesis, but also cell fate transitions. Based on

the observation that most scRNA-seq approaches capture both premature unspliced mRNA

and mature spliced mRNA information, La Manno et al. [1] pioneered the concept of RNA

velocity or the time derivative of spliced RNA to reveal the local fate of each individual and

designed an RNA kinetic parameter inference method called velocyto based on the steady state

assumption. In a later work, scVelo [2] relaxed the steady-state assumption and proposed a

dynamic RNA velocity model to infer gene-specific reaction rates of transcription, splicing

and degradation as well as cell-specific hidden time using the expectation-maximization (EM)

algorithm. Li et al. [3, 4] derived a stochastic model of RNA velocity based on the chemical

master equation (CME) satisfied by the probability mass function (PMF) rather than the deter-

ministic ordinary differential equation (ODE) satisfied by the mean, and presented a mathe-

matical analysis framework of RNA velocity. More general studies on the analytical solution of

the CME for monomolecular reaction systems are also discussed in [5]. In addition, a rigorous

and detailed analysis of the entire workflow for RNA velocity is also provided in [6]. MultiVelo

[7] extends the dynamic RNA velocity model by incorporating epigenome data that can be

jointly measured with emerging multi-omics approaches. Protaccel [8] extends the concept of

RNA velocity to protein. UniTVelo [9] uses a top-down design for more flexible estimation of

the RNA velocity, as opposed to the usual bottom-up strategy. DeepVelo [10] uses graph con-

volutional neural networks to infer cell-specific parameters to extend RNA velocity to cell pop-

ulations containing time-dependent dynamics and multiple lineages which were proven to be

challenging in previous methods [11]. Other deep learning-based approaches include VeloAE

[12], VeloVI [13], VeloVAE [14], LatentVelo [15], cellDancer [16], and so on. However, due to

the absence of physical time information, the above methods usually suffer the issue of scale

invariance, that is, amplifying the parameters by an arbitrary amount will not change the solu-

tion if the time shrinks with the same amount, e.g., the exact physical time remains undeter-

mined. This issue makes the inferred parameters and the RNA velocity have physical

significance only up to a multiplicative constant [3]. In addition, the missing time information

enters the model as hidden variables, which makes the parameter inference difficult.

Technological innovations in scRNA-seq now enable us to directly measure the amount of

newly synthesized mRNA molecules over a short period of time, either through chemically
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introduced mutations in the sequencing reads or direct biotin pull-down of RNA analogs such

as 4sU metabolically labeled RNA molecules, which subtly introduces physical time informa-

tion. These time-resolved metabolic labeling–augmented scRNA-seq (tscRNA-seq) include

scSLAM-seq [17], scNT-seq [18], sci-fate [19], NASC-seq [20], scEU-seq [21], PerturbSci-

Kinetics [22] and others [23–25]. Qiu et al. [26] recently developed Dynamo to reconstruct

analytical vector fields from discrete RNA velocity vectors by taking advantage of tscRNA-seq

data to infer more robust and time-resolved RNA velocity, however, they only used the deter-

ministic model and largely relied on the steady-state assumption. CellRank2 [27] also focuses

on pulse and chase tscRNA-seq data, but ignores the broader one-shot tscRNA-seq data, and

relies on deterministic models for parameter inference.

To overcome the shortcomings of Dynamo and fully explore the potential of tscRNA-seq

data, we present the Storm approach (Stochastic models of RNA metabolic-labeling) to

improve the estimation of RNA kinetic parameters and the inference of the RNA velocity of

the metabolic labeling scRNA-seq data by incorporating the transient stochastic dynamics of

gene expressions. Importantly, we focus on modeling the kinetics/pulse metabolic labeling

data as it follows the RNA synthesis across multiple short time periods and is thus ideal for

capturing temporal RNA kinetics. In order to properly model both biological noise and cell-

specific technical noise (due to the variations in sequencing depth across individual cells and

dropout resulting from imperfect RNA capture in scRNA-seq), we implemented in Storm

three stochastic models of new mRNA (or new unspliced and spliced mRNA). Depending on

the biological processes considered, Storm indicates that new mRNA sequencing data obeys

different types of cell-specific Poisson (CSP) distributions. On this basis, Storm also includes

hypothesis testing, parameter inference and goodness of fit evaluation methods for CSP-type

distribution. In addition, we analyze the similarities and differences of the model considering

RNA splicing or not. For one-shot data containing both unspliced unlabeled (uu), unspliced

labeled (ul), spliced unlabeled (su) and spliced labeled (sl) RNA, we devise a two-stage parame-

ter inference method that does not rely on steady-state assumption to infer the absolute magni-

tude of the kinetic parameters. For one-shot data containing only new RNA and total RNA, we

introduce the steady-state assumption to make the parameter inference possible. We verified

the effectiveness of Storm in the cell cycle data set of kinetic experiments from the scEU-seq

study [21] and several one-shot datasets, including scSLAM-seq, scNT-seq, sci-fate and Per-

turbSci-Kinetics. Storm is incorporated in Dynamo [26] of the Aristotle ecosystem that facili-

tates rich downstream analytical vector field modeling.

Results

Overall description of Storm

We established three stochastic gene expression models for new mRNA (or new unspliced and

spliced mRNA) (Fig 1A) for the inference of the RNA kinetic parameters and thus the RNA

velocity in the Storm approach. In Model 1, only transcription and mRNA degradation were

considered. In Model 2, we considered transcription, splicing, and spliced mRNA degradation.

And in Model 3, we considered the switching of gene expression states, transcription in the

active state, and mRNA degradation.

The complete workflow of Storm is demonstrated in Fig 1B. We first analytically solve

the new RNA (or new unspliced and spliced mRNA) stochastic dynamics corresponding to

the above three models, which are Poisson distribution, independent Poisson distribution

and zero-inflated Poisson distribution, respectively. In addition, we model the technical

noise as the cell-specific binomial distribution. By integrating the biological noise and the

technical noise together, we obtain the distribution for the measured number of new/
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Fig 1. Schematic overview of Storm. A. Three models of RNA life cycle considering different biological processes: Model 1 (CSP-Baseline): Reaction

dynamics model for new RNA l(t) ignoring the splicing process, where α is the transcription rate and γt is the total mRNA degradation rate. Model 2

(CSP-Splicing): Reaction dynamics model of new unspliced and spliced mRNA (ul(t), sl(t)) considering the splicing process, where β is the splicing rate, γs
is the spliced mRNA degradation rate, and α is the same as Model 1. Model 3 (CSP-Switching): Reaction dynamics model of new RNA l(t) considering

gene state switching, where α and γt are the same as in Model 1, kon is the rate at which the gene switches from the inactive state to the active state, koff is the

opposite. B. Complete workflow diagram for parameter inference and downstream analysis based on stochastic dynamics of new mRNA considering

technical noise. C. Specific parameter inference strategies for one-shot/pulse experiments and steady-state/non-steady-state assumption.

https://doi.org/10.1371/journal.pcbi.1012606.g001
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labeled mRNA molecules (or new unspliced and spliced mRNA molecules), which are cell-

specific Poisson distribution, independent cell-specific Poisson distribution and cell-spe-

cific zero-inflated Poisson distribution, respectively. Therefore, we call the three models

CSP-Baseline, CSP-Splicing, and CSP-Switching for easy memory and use them later to bet-

ter distinguish these three models. Maximum likelihood estimation (MLE) is used to fit the

data and make inferences for the parameters shown in the corresponding models.

To ensure the general applicability of Storm in common nascent RNA labeling schemes,

such as one-shot or kinetics/pulse experiments (See Figure 2 of Qiu, et. al [26]), we

designed specific estimation strategies for each labeling scheme(Fig 1C). For the one-shot

labeling experiments with only new RNA and total RNA data, since there is only one label-

ing duration and the lack of splicing data, the steady-state assumption under the stochastic

dynamics framework is reinvoked to infer parameters (Fig 1C Left). For the one-shot label-

ing experiments with uu, ul, su and sl RNA, we design a two-stage approach that does not

rely on the steady-state assumption. More specifically, we first use scVelo [2] to determine

the relative size of the kinetic parameters, and then use CSP-Splicing to determine the abso-

lute size (Fig 1C Left). For kinetics/pulse-labeling experiments with multiple labeling dura-

tions, the transient stochastic dynamics framework is used without the steady-state

assumption (Fig 1C Right). CSP-Baseline is recommended if the concern is RNA velocity,

and CSP-Splicing should be used if the concern also includes splicing dynamics.

Although steady-state assumption can also be included, we recommend that non-steady-

state approach should be used unless the user has sufficient knowledge of the biological

process being studied. Furthermore, the goodness-of-fit index based on deviance com-

monly used in generalized linear models is utilized to quantify the goodness of fit of our

models in kinetics/pulse datasets. The index is then used to select genes that are more con-

sistent with model assumptions for later downstream analysis, such as the enrichment anal-

ysis of different gene-specific parameters. Furthermore, we relaxed the previous

assumption of constant parameters in genes or cells and assumed that only degradation

rates (γt in CSP-Baseline and CSP-Switching; γs in CSP-Splicing) are constant while the

other parameters are cell-specific and depend on the state of gene expression in each cell.

This relaxation would be useful for modeling lineage-specific kinetics resulted from hierar-

chical lineage bifurcation, which is common in cell development. Finally, in order to calcu-

late and visualize the RNA velocity, we reduced the considered stochastic models to derive

the deterministic equation for the mean gene expression. The inferred parameters, after fil-

tering with the goodness-of-fit index are then used in RNA velocity analysis and visualiza-

tion. Notably, to demonstrate Storm’s performance, we conducted systematic comparison

with the state-of-the-art method Dynamo [26] for processing metabolic labeling scRNA-

seq experiment datasets.

In the continued subsections we will present the details of each step in the Storm workflow,

starting from the introduction of our mathematical models.

CSP modeling of counts data with metabolic labeling information

We proposed and analytically solved three aforementioned stochastic gene expression models

for the dynamics of new mRNAs (or new unspliced and spliced mRNAs).

For simplicity of modeling, we followed [1, 2] to assume that the genes are independent. In

the stochastic gene expression model, the generation of new/labeled mRNA ~lðtÞ (or new

unspliced and spliced mRNA ð~ulðtÞ;~slðtÞÞ) is a stochastic process, and we are interested in the
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evolution of its PMF over time, which is denoted by

~PnðtÞ ≔ Probð~lðtÞ ¼ nÞ; n 2 N

~PmnðtÞ ≔ Probðð~ulðtÞ;~slðtÞÞ ¼ ðm; nÞÞ; ðm; nÞ 2 N
2
:

ð1Þ

In CSP-Baseline and CSP-Splicing, Since the initial value of~lðtÞ (or ð~ulðtÞ;~slðtÞÞ) is 0, we

obtained the following closed-form solution (see “Methods” section).

CSP-Baseline : ~PnðtÞ ¼
anðtÞ
n!

e� aðtÞ; n 2 N;

CSP-Splicing : ~PmnðtÞ ¼
bmðtÞcnðtÞ

m!n!
e� bðtÞ� cðtÞ; ðm; nÞ 2 N2

;

ð2Þ

where a(t), b(t) and c(t) are solutions to the corresponding deterministic equation, which

means that~lðtÞ obeys the Poisson distribution with mean a(t) in CSP-Baseline, and

ð~ulðtÞ;~slðtÞÞ obey independent Poisson distributions with mean b(t) and c(t) in CSP-Splicing.

Here α, β are the transcription and splicing rates, and γs, γt are the spliced and total mRNA

degradation rates, respectively. CSP-Switching can be solved similarly analytically under the

assumption that the switching rates are much smaller than the transcription and degradation

rates (see “Methods” section).

We also specifically modeled technical noise of the measured number of new RNA (or new

unspliced and spliced mRNA) molecules in scRNA-seq experiments. Such noises often lead to

dropout of RNA measurements during the sequencing process and generally result in varia-

tions in sequencing depth across cells. To account for the noise, in Storm we modeled the

dropout process of sequencing technology as cell-specific binomial distributions. Adopting the

common practice in many preprocessing pipelines through a size factor to normalize the data

[1, 2, 10, 13, 26], we assumed that the total numbers of mRNA molecules across all genes in dif-

ferent cells are close. Probabilistically, this assumption implies that

pj / nj;

where pj is the probability of mRNA molecules being captured in cell j and nj is the total num-

ber of mRNA molecules across all genes in cell j in scRNA-seq experiments.

Combining the stochastic models for biological and technical noise, we can obtain different

formalisms of the distribution for the measured number of new/labeled mRNA molecules l(t)
(or new unspliced and spliced mRNA molecules (ul(t), sl(t))) in the scRNA-seq experiments

(see “Methods” section) for each model. Specifically, in CSP-Baseline, l(t) obeys the cell-spe-

cific Poisson (CSP) distribution, that is,

Pn;jðtÞ ¼
ðpjaðtÞÞ

n

n!
e� pjaðtÞ; ð3Þ

where Pn,j(t) is the PMF for the measured number of new mRNA molecules in cell j. In

CSP-Splicing, (ul(t), sl(t)) obeys the independent cell-specific Poisson (ICSP) distribution, that

is,

Pmn;jðtÞ ¼
ðpjbðtÞÞ

m

m!
e� pjbðtÞ

ðpjcðtÞÞ
n

n!
e� pjcðtÞ; ð4Þ

where Pmn,j(t) is the joint PMF for the measured number of new unspliced and spliced mRNA

molecules in cell j. The derivation of CSP-Switching is similar (see “Methods” section). We call

PLOS COMPUTATIONAL BIOLOGY Storm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012606 November 18, 2024 6 / 38

https://doi.org/10.1371/journal.pcbi.1012606


the above distributions as cell-specific because different cells obey the distributions with differ-

ent parameters. Finally for labeling efficiency, we did not model it directly but followed

Dynamo using GRAND-SLAM [33] to correct the new RNA data in advance.

Note that Grün et al. also modeled the scRNA-seq data by integrating biological noise and

technical noise [34]. Our work is different from them in the following aspects: (1) Our work

models the transient dynamics of new mRNA and solves their distribution for the proposed

stochastic models analytically. However, in [34], they instead modeled the total mRNA and

derived that the biological noise follows a negative binomial distribution as the steady state of

the transcriptional bursting model. (2) Our work accurately models the technical noise as a

cell-specific binomial distribution, while they approximated the cell-specific binomial distribu-

tion with a Poisson distribution and modeled the capture probability as a random variable sub-

ject to the Gamma distribution, which finally leads to a negative binomial distribution

(Poisson-Gamma mixture distribution) of the technical noise.

As one-shot labeling experiments are much more convenient than pulse experiments in

practice, in the following, we will first demonstrate how Storm can be applied to the one-shot

case. We will then extensively show Storm’s power in analyzing the pulse datasets.

Stochastic models combined with steady-state assumptions for one-shot

data without splicing information

For one-shot data without splicing information, we designed the corresponding parameter

inference method which invokes the steady-state assumption under the stochastic model,

focusing specifically on CSP-Baseline (see “Methods” section). Similar steady-state methods of

the stochastic model can also be designed for both CSP-Splicing and CSP-Switching as well,

although they are not the focus of this paper.

We validated our method in several one-shot datasets (Fig 2 and S1 Fig). We first analyzed

a primary human HSPCs datasets from scNT-seq [18]. Both Dynamo and Storm reveal a

smooth transition of HSCs into MEP-like and GMP-like cells, which further ramify into Meg/

Ery/Bas lineages and Mon/Neu lineages, respectively, which is consistent with the established

knowledge of hematopoiesis (Fig 2A). Next, we analyzed the neuronal activity dataset from the

scNT-seq study [18] to investigate cellular polarization dynamics after KCl treatment. Dynamo

and Storm both revealed a coherent transition that nicely follows the temporal progression

from time point 0 to 15, 30, 60 and finally 120 minutes (Fig 2C). We also analyzed a dataset

from the sci-fate study [19] in which cell cycle progression and glucocorticoid receptor (GR)

activation were explored. Similar to Dynamo, the RNA velocity flow from our method also

revealed a sequential transition of cells following the DEX (dexamethasone) treatment times in

the first two principal components (PCs) (Fig 2E Left). In the second two PCs, we observed an

orthogonal circular progression of the cell cycle (Fig 2E Middle). From the first two UMAP

dimensions projected further from the four PCs, we observed a combined dynamics of GR

responses and cell cycle progression (Fig 2E Right). We analyzed a dataset from PerturbSci-

Kinetics [22], Dynamo and Storm observed similar results (Fig 2F). Additionally we analyzed

mouse fibroblast cells dataset from scSLAM-seq [17]. We observed that Dynamo and Storm

inferred similar velocities, and they both further discriminated infected from non-infected

cells (S1A Fig).

Finally, we quantitatively compared the degradation rates γt inferred by the two methods

(Fig 2B and 2C and S1B and S1D Fig). The inferred results of the two methods are highly cor-

related, with values of 0.74, 0.76, 0.80, 0.91, and 0.87 respectively on these five datasets. The

absolute differences are also low, and the inferred results are mostly distributed around the

green line y = x. We think that the possible reason for this is that the steady-state assumption
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Fig 2. Stochastic model combined with steady-state assumptions for one-shot data without splicing information. Storm in this figure refers to the

inference strategy of CSP-Baseline model combined with the steady state assumption. A. Streamline projected in the UMAP space plots of primary

human HSPCs datasets from scNT-seq [26]. B. Degradation rates γt estimated with steady-based method in Storm compared to that of the Dynamo

method in the primary human HSPCs datasets. C. Streamline projected in the UMAP space plots of neuronal activity under KCl polarization datasets from

scNT-seq [18]. D. Same as B., but for the neuronal activity datasets. E. Streamline plots of the sci-fate dataset [19] reveal two orthogonal processes of GR

response and cell-cycle progression. From left to right: streamline plot on the first two PCs, the second two PCs, and the first two UMAP components that

are reduced from the four PCs, respectively. The first row is the result of Storm and the second row is the result of Dynamo. F. Streamline projected in the

UMAP space plots of the dataset from PerturbSci-Kinetics [22].

https://doi.org/10.1371/journal.pcbi.1012606.g002
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plays a decisive role. Such methods may fail when the steady-state assumption is violated, so it

is important to design methods for one-shot experiments that do not rely on the steady state

assumption.

Storm analyzes one-shot data with both splicing and labeling information

without steady-state assumption

For one-shot data containing both splicing and labeling information, we designed a two-stage

parameter inference method that does not depend on the steady-state assumption by first

modeling unspliced and spliced RNAs with the dynamic model in scVelo [2] and then

unspliced labeled and spliced labeled RNA counts with CSP-Splicing (see “Methods” section).

Also distinguishing from scVelo [2] in which velocity genes are picked before running the

algorithm, we compute goodness of fit R2 to pick well-fitting genes in scVelo [2] for down-

stream analysis (see “Methods” section).

We validate our method on both simulation and real single cell datasets (Fig 3 and S2 Fig).

We first constructed a bifurcated one-shot simulation dataset by following the methods for

constructing bifurcated data in SymSim [30] and VeloSim [31] (see “Methods” section). The

correct direction of the streamlines started from the right side of the cells on the PCA embed-

ding and then bifurcated into two branches in the middle. We compare the performance of

Storm, Dynamo, and a deep learning-based method cellDancer [16] on this simulated dataset,

and the results show that only Storm and cellDancer got the correct streamlines (Fig 3A and

S2A Fig). In addition we compared the degradation rate values estimated by the different

methods with the true values (Fig 3B and 3C). The results show that cellDancer’s estimated val-

ues are not in the same order of magnitude as the true values and have a poor correlation (Fig

3B and 3C). This is a difficulty inherent in methods that are missing physical time information.

Dynamo and Storm’s estimates are in the same order of magnitude as the true values, but

Storm has a lower absolute error and a higher correlation with the true values compared to

Dynamo (Fig 3B and 3C). It is also worth noting that the absolute error of the selected genes in

Storm is further reduced (Fig 3C), which indicates that the selection strategy is effective. We

also compared gene-cell-wise transcription rates. The results show lower absolute errors in

estimated transcription rates for Storm and Dynamo (Fig 3D Left and S2C Fig), but much

higher for cellDancer (Fig 3D Right). We analyzed the murine intestinal organoid system data-

set from scEU-seq [21]. Both Storm, Dynamo and cellDancer observed a bifurcation (Fig 3E

and S2B Fig) from intestinal stem cells into the secretory lineage (left) and the enterocyte line-

age (right).

To demonstrate the precision and robustness of the Storm method in estimating the one-

shot dataset, we benchmarked the estimated kinetic parameters of different subsets of the cell

cycle pulse-labeling dataset [21], each with a different duration of labeling. On the 15-minute

labeling sub-dataset, Storm recovers a transition that matches well with the cell-cycle progres-

sion, while the transition recovered by Dynamo is problematic near the M phase (Fig 3F Left).

On the 30-minute labeling sub-dataset, both methods recover the cell cycle progression cor-

rectly, but the streamlines of our method are considerably smoother compared to those of

Dynamo (Fig 3F Right). In addition, we compared the consistency of degradation rates (γs in

Storm and γt in Dynamo) inferred by the two methods between two sub-datasets with different

labeling durations (Fig 3G). The results show that they are similar in terms of correlation, but

our method is much smaller in terms of mean absolute error. Notably, although Storm shows

higher consistency than Dynamo, it is still not satisfactory, perhaps due to the experimental

noises from different labeling durations. Therefore, it is crucial to integrate data of different

durations of labeling when a kinetic experiment is available. Furthermore, it is equally
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Fig 3. Storm analyzes one-shot data with both splicing and labeling information without steady-state assumption. Storm in this figure refers to the

inference strategy of CSP-Splicing model combined with scVelo. A. Streamline projected in the PCA space plots of one-shot bifurcation simulation data.

Left: Storm; Right: Dynamo. B. Comparison of the estimated degradation rate with the true degradation rate in one-shot bifurcation simulation data.

cellDancer uses the average of cell-wise degradation rates. C. Distribution plot of the difference between the estimated degradation rate and the true value,

including Storm, Storm (selected) and Dynamo. D. Heat map of absolute error between estimated and true gene-cell-wise transcription rates α of one-shot

bifurcation simulation data. Left: Storm; Right: cellDancer. E. Streamline plot in the UMAP space of the murine intestinal organoid system dataset from

scEU-seq [21]. F. Streamline projected in the RFP_GFP space plots of cell cycle dataset from scEU-seq [21]. On the left is the result of taking only the data

labelled with 15 minutes, and on the right is the data labelled with 30 minutes. G. Comparison of degradation rates (γs in Storm and γt in Dynamo) in cell

cycle datasets with labeling duration of 15 and 30 minutes.

https://doi.org/10.1371/journal.pcbi.1012606.g003
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important to design methods that do not rely on the steady-state assumption and integrate

data of different durations for parameter inference.

Statistical analysis of cell cycle dataset based on Storm’s stochastic model

Next, we first performed a goodness-of-fit test of the stochastic model proposed in Storm to a

cell cycle dataset from scEU-seq [21] with multiple labeling time points to validate our

proposals.

When the fixed labeling duration is tfixed, a(tfixed), b(tfixed) and c(tfixed) are all fixed con-

stants. We can test whether the number of new mRNA molecules in tscRNA-seq within a fixed

labeling duration matches the distribution obtained based on the stochastic models (Eqs (3),

(4) and (16)), respectively. A common method of testing whether a dataset obeys a given distri-

bution is the chi-square (χ2) goodness-of-fit test [35]. However, the usual χ2 test is not directly

applicable because in our case different cells obey different distributions with different param-

eters. By inspecting the mathematical analysis procedure of the χ2 test [36], we constructed a

new asymptotic χ2 statistics and proposed a modified χ2 test for our cell-specific distributions

(see “Methods” section).

We used the proposed cell-specific χ2 test in the cell cycle dataset from the scEU-seq study

[21], in which cells were labeled for 15, 30, 45, 60, 120 or 180 minutes. Because the labeled

unspliced mRNA counts ul(t) were too small to be grouped/binned to create a distribution,

hypothesis tests were performed only for CSP and CSZIP distributions and not for ICSP distri-

bution. The results are shown in Table 1. We found that some genes were not well determined

(especially for cases with a short duration of labeling) in the sense that these genes had too few

new mRNA molecules in the tscRNA-seq experiments, which resulted in very few groupings

and perfect fittings. With so few mRNA counts for these genes, we were unable to determine

whether they obeyed our proposed distribution or not. Moreover, our results revealed that the

CSZIP distribution exhibited a better fit with the data than the CSP distribution when focusing

on a fixed time point alone, suggesting that the data are indeed zero-inflated.

We next showed the high goodness-of-fit of the CSP and CSZIP distributions on two char-

acteristic genes, namely RPL41 and IL22RA1 with an overall low and high gene expression

respectively (Fig 4A). Qualitatively, we found that the expected counts of both the CSP and

CSZIP distributions matched well with the observed counts for the gene RPL41. Quantita-

tively, the results of the cell-specific chi-square test also showed that the CSP or CSZIP distri-

bution was well satisfies in most labeling durations (Fig 4A first row). Similar results were

observed for the gene IL22RA1 with significantly higher expression (Fig 4A second row).

Therefore, we demonstrated CSP and CSZIP distributions accurately describe these two genes

and is thus suitable for modeling the tscRNA-seq datasets.

Table 1. The proposed sample-specific hypothesis test results on whether the number of new mRNA molecules in the Cell Cycle dataset obeys the CSP and CSZIP

distributions. UTD means that it is unable to determine because there are too few groupings resulting in zero degrees of freedom, when it is always a perfect fit. The signif-

icance level is 0.05.

Labeling duration 15mins 30mins 45mins 60mins 120mins 180mins

CSP Accept 0.116 0.067 0.049 0.062 0.064 0.065

Reject 0.278 0.568 0.655 0.652 0.695 0.725

UTD 0.606 0.365 0.296 0.286 0.241 0.210

CSZIP Accept 0.351 0.467 0.472 0.476 0.459 0.459

Reject 0.055 0.189 0.266 0.274 0.327 0.344

UTD 0.594 0.344 0.262 0.250 0.214 0.197

https://doi.org/10.1371/journal.pcbi.1012606.t001

PLOS COMPUTATIONAL BIOLOGY Storm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012606 November 18, 2024 11 / 38

https://doi.org/10.1371/journal.pcbi.1012606.t001
https://doi.org/10.1371/journal.pcbi.1012606


Finally, we found that, for most genes, the number of total mRNA molecules shares the

same distribution across different labeling durations. In Fig 4B, we showed the number of total

mRNA molecules of four example genes TSPOAP1, GPRC5A, ADAMTS6 and APEX1 is nearly

identical across different labeling durations. Quantitatively, we performed a global chi-square

independence test on the number of total mRNAs (as distinct from the new mRNAs) with dif-

ferent durations of labeling in all genes and found that, interestingly, there are 72.3% of the

genes passed the test at a significance level of 0.05 (Fig 4C). This indicates that a considerable

proportion of the number of genes’ total mRNA molecules obeyed the same distribution, con-

sistent with what we observed for the four example genes.

Storm accurately infers kinetic parameters that leads to rich insights of cell

cycle via enrichment analysis

In the kinetic experiments, we relied on three stochastic models without the steady-state

assumption to infer different set of kinetic parameters using maximum likelihood estimation

(see “Methods” section), namely α and γt for CSP-Baseline, α, β and γs for CSP-Splicing, and

α, γt and poff for CSP-Switching. In addition, we defined the goodness-of-fit of each of the

three models (see “Methods” section). According to the goodness-of-fit index, we selected

genes that were more consistent with the model assumptions for downstream tasks, such as

the enrichment analysis and RNA velocity analysis, etc.

Fig 4. Statistical analysis of cell cycle dataset. A. Observed counts, expected counts of CSP distribution, and expected counts of CSZIP distribution of new

mRNA molecules of the two example genes RPL41 and IL22RA1. The first row: Fitting results of the RPL41 gene with a small number of mRNA molecules;

The second row: Fitting results of the IL22RA1 gene with a higher number of new mRNA molecules (truncated to 11 for better visualization). PCSP and

PCSZIP refer to the p-values of the cell-specific chi-square tests with the corresponding distributions. B. Comparison of the total mRNA counts with different

labeling durations of the four example genes TSPOAP1, GPRC5A, ADAMTS6 and APEX1. P refers to the p-value of the Chi-square contingency table

independence test. C. Results of chi-square independence test for total RNA counts (significance level 0.05). “Same” here means accepting the null

hypothesis of the chi-square independence test that total RNA counts with different time durations obey the same distribution. “Different” means the

opposite.

https://doi.org/10.1371/journal.pcbi.1012606.g004
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Compared with Dynamo [26], the state-of-the-art method for processing tscRNA-seq data-

sets, our advantages are mainly in the following aspects: (1) Our method does not require

steady-state assumptions on the kinetics experiments while Dynamo heavily relies on the

steady-state assumptions; (2) Our stochastic model-based approach is more consistent with

real biological process, while Dynamo only utilizes the deterministic model of mean value; (3)

Our model takes into account all cells in the inference, while the approach based on steady-

state assumptions in Dynamo only considers a small number of cells with high expression. In

addition, we revealed the difference between the total mRNA degradation rate γt and spliced

mRNA degradation rate γs based on their different physical roles, distinguished them in differ-

ent models, and finally gave the relationship between these two (see “Methods” section). We

noted that in Dynamo, to infer β, γt was first inferred when the splicing was ignored, then

~g ≔ gs=b was inferred using the method based on the steady-state assumption in scVelo [2],

and finally gt=~g was taken as the inference of β upon assuming γt = γs. However, gt=~g ¼ bgt=gs,

while γt and γs are generally not equal. This point was overlooked in Dynamo, which causes an

inaccurate estimate of β. In fact, under the steady-state assumption, β can be directly estimated

by using only ul(t) through the formula ul(t) = (1 − e−βt)α/β, similar to the two-step method

used in Dynamo to estimate γt through lðtÞ ¼ ð1 � e� gt tÞa=gt since they have similar form.

However, we don’t use this method in Storm.

With the above inference methods and insights, we studied a cell cycle dataset from the

scEU-seq study [21]. We compared the parameter inference results of the three models (Fig

5A). When splicing was not considered, the inference results based on CSP-Baseline and

CSP-Switching were close, with high correlation coefficients, especially in genes with higher

goodness of fit (Fig 5A Left). However, whether or not splicing is considered significantly

impacts the inference results. The inference results based on CSP-Baseline and CSP-Splicing

were quite different, with low correlation coefficients, even in genes with higher goodness of

fit (Fig 5A Middle). We speculate that this is due to the assumptions of the two models are

incompatible: in CSP-Baseline, γt is assumed to be a constant; while in CSP-Splicing, γs is

assumed to be a constant. But these two assumptions can not be held simultaneously for their

different roles in the physical modeling and our analysis results (see “Methods” section). We

also compared γt and γs computed by the CSP-Splicing, and the results showed that γs was

always greater than γt, and the linear correlation between the two was not high (Fig 5A Right).

In summary, we showed that kinetic parameters inferred from CSP-Baseline and CSP-Switch-

ing but not CSP-Baseline and CSP-Splicing, are consistent.

The inferred total mRNA degradation rates γt from Storm and Dynamo are close in well-fit-

ted genes, while CSP-Splicing’s inferred splicing rates β are always larger than those from

Dynamo. We compared the inferred results of γt in CSP-Baseline with those in Dynamo (Fig

5B Left). Although they were not consistent for some genes, they are quite consistent for the

genes with better fitting. We also compared the inference of β in CSP-Splicing with those in

Dynamo (Fig 5B Right). The result shows that the inferred β by our approach was usually

larger than those in Dynamo, even for the genes with a better fitting. A possible explanation is

that the inference of Dynamo ignored the difference between γt and γs, which made the

inferred β smaller. We also compared the goodness-of-fit of the three stochastic models. Over-

all, they are relatively close (Fig 5C Left). However, when we focused on genes with higher new

mRNA levels (top 10%), CSP-Splicing had a better fit (Fig 5C Right). We speculate that this is

because genes with higher expression are suitable to be fitted with more complex models.

When the parameter γt is small, parameter inference may not be robust enough. However,

we found that the genes selected by the goodness-of-fit have robust results. We analyzed the

robustness of the parameter inference in the simplest CSP-Baseline model (see “Methods” sec-

tion). We plotted the landscape of a typical negative log-likelihood loss function based on
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Fig 5. Parameter inference and enrichment analysis for the cell cycle dataset. The inference strategy involved in this figure is for kinetics/pulse data.

A. Comparison of parameter inference results of our three stochastic models. From left to right are the comparison of γt of CSP-Baseline and

CSP-Switching, the comparison of γt of CSP-Baseline and CSP-Splicing, the comparison of γt and γs in CSP-Splicing. The overlapping well-fitted genes

were set as the overlap set of genes in the top 40% of the goodness-of-fit for both methods. B. Comparison of inferred parameters between our stochastic

models and Dynamo’s method. Left: the comparison of γt between CSP-Baseline and Dynamo. Right: the comparison of β between CSP-Splicing and

Dynamo. C. Comparison of the goodness-of-fit of the three stochastic models. Left: all highly variable genes. Right: genes in the top 10% of average new

mRNA expression in highly variable genes. Here Base refers to the CSP-Baseline model, Splic to the CSP-Splicing model and Switch to the CSP-Switching

model. D. Robust analysis. Left: Landscape of CSP-Baseline-based loss functions for the a typical gene WWTR1. Right: Scatter plot of robustness measure

and goodness of fit for parameter inference. E. Enrichment analysis results of genes with high gene-wise γt, β (top 50%) in well fitted genes (top 40% of

goodness of fit). F. Heat map of cell-wise parameters for well-fitted genes. From left to right, cell-wise α based on the CSP-Baseline, cell-wise αpon based on

the CSP-Switching and cell-wise β based on the CSP-Splicing, respectively. Across all three heatmaps, the X-axis is the relative cell cycle position while the

order of genes in the y-axis is arranged such that the peak time of each gene increases from the top left to bottom right.

https://doi.org/10.1371/journal.pcbi.1012606.g005
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CSP-Baseline for gene WWTR1 (Fig 5D Left), with the black line corresponding to @ℓ(α, γt)/
@α = 0 (Eq (83) in the “Methods” section) and blue line corresponding to α = αcons when 1 �

e� gt t � gtt holds (Eq (84) in the “Methods” section). The landscape of the loss function shows a

fairly flat area around @ℓ/@α = 0, and the two lines almost coincide when γt is small, which is

consistent with our previous argument. We design a quantitative index to measure the robust-

ness of parameter inference (see “Methods” section) and analyzed the relationship between the

robustness measure and the goodness-of-fit �R2
D (Fig 5D Right). We found that parameter

robustness was positively correlated with the goodness of fit and the correlation coefficient

was as high as 0.69. Though the reason for this high correlation is not clearly understood in

theory, we can utilize this fact to select the genes with high goodness of fit for downstream

analysis, which also ensures the results are relatively robust.

We selected the well-fitted genes (top 40% �R2
D) and performed enrichment analysis on this

fraction according to the magnitude of gene-wise parameters γt, β, α and poff (Fig 5E and S3

Fig). The results of the enrichment analysis showed that these genes were highly correlated

with the cell cycle progression.

The assumption of constant coefficients is often violated because of the time-dependent

kinetics and multiple lineages [11]. Many works relaxed the constant coefficient assumption

and inferred cell-specific parameters to overcome this issue [10, 13, 16, 26]. In our proposal,

we take a post-processing step to get the cell-specific parameters after inferring all parameters

through previous procedures. We relaxed the constant coefficient assumption and proposed a

method to infer cell-specific parameters except the constant degradation rate γt or γs, i.e., we

inferred cell-specific α in CSP-Baseline, cell-specific α × pon in CSP-Switching, and the cell-

specific α and β in CSP-Splicing (see “Methods” section). This partial constant coefficient

assumption had support from the study in [21], which showed that the degradation rate of

most genes was independent of time. Finally, We plotted heat maps of the cell-wise α (based

on CSP-Baseline), α × pon (based on CSP-Switching) and β (based on CSP-Splicing) for the

well-fitted genes (Fig 5F). The results show that cells in the same cell cycle phase usually have

closer kinetic parameters.

Storm improves the robustness and accuracy of time-resolved RNA velocity

analysis

Our three stochastic models described the evolution of the PMF (or joint PMF) of the number

of new mRNA (or new unspliced and spliced mRNA) molecules over time for different set-

tings. To estimate RNA velocity of single cells, only the evolution of the mean value over time

will be considered, which requires us to reduce the stochastic models to the corresponding

deterministic models (see “Methods” section).

Based on the deterministic model derived for the mean corresponding to the three stochas-

tic models, we inferred the relevant parameters for computing different types of RNA velocity

for different models. In Models 1 and 3, we computed the total RNA velocity dh~rðtÞi=dt
because the splicing process was ignored. In CSP-Splicing, we calculated both total RNA veloc-

ity dh~rðtÞi=dt and spliced RNA velocity dh~sðtÞi=dt (see “Methods” section). Note that because

the new RNA velocity mostly reflects the metabolic labeling process of RNA and does not

reveal RNA biogenesis, it is thus not used. In addition, a derived relationship between γt and γs
suggests that the total RNA velocity can be computed based on either dh~rðtÞi=dt ¼
a � gsh~sðtÞi or dh~rðtÞi=dt ¼ a � gth~rðtÞi. In practice, we used the former approach by default.

We compared the streamlines of the total RNA velocity of our three models with that of

Dynamo on the cell cycle scEU-seq dataset (Fig 6A). Almost all streamlines from our models

correctly reflect the cell cycle progression, except that part of them from CSP-Splicing had a
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minor flaw in the M phase and CSP-Switching in the S phase. In addition, we found both

CSP-Splicing and Dynamo’s spliced RNA velocity (S4A Fig) did not get entirely correct

streamline results. The streamlines of CSP-Splicing were problematic in the M-G1 phase,

while the streamlines of Dynamo were problematic in the S phase. We speculate that this is

probably due to the fact that new unspliced mRNAs have rather low expression levels,

Fig 6. RNA velocity analysis of the cell cycle dataset. The inference strategy involved in this figure is for kinetics/pulse data. A. Comparison of total

RNA velocity streamline visualizations between three stochastic methods and Dynamo in cell cycle dataset. B. Comparison of average correctness of total

velocity in gene expression space and RFP_GFP space. The p-values are given by the one-sided Wilcoxon test. Here Base refers to the CSP-Baseline model,

Splic to the CSP-Splicing model and Switch to the CSP-Switching model. C. Similar to B, comparison of velocity consistency. D. The duration time (unit:

hour) of each cell cycle phase of the human RPE1-FUCCI system based on Storm’s CSP-Baseline and Dynamo. E. Total RNA velocity streamlines

calculated using Storm’s CSP-Baseline with gene-wise parameters (instead of using gene-cell-wise parameters except for the degradation rate). F. The

smoothed expression of DCBLD2 in different cells. G. Comparison of total RNA velocity in DCBLD2 between CSP-Baseline and Dynamo. H. Phase

portraits of new-total RNA planes of DCBLD2 of CSP-Baseline and Dynamo. Quivers correspond to the total (x-component) or new (y-component) RNA

velocity calculated by the different methods.

https://doi.org/10.1371/journal.pcbi.1012606.g006
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frustrated with many dropouts and very sparse data, resulting in unreliable inferences of the

parameter β and inaccurate RNA velocities.

We also quantitatively benchmarked the average correctness and consistency of the veloci-

ties in different methods in the original gene expression space and low-dimensional space

(here the RFP_GFP space is used which corresponds to the Geminin-GFP and Cdt1-RFP-cor-

rected signals of RPE1-FUCCI cells)(Fig 6B and 6C and S4B and S4C Fig). The definition of

correctness and consistency of velocity is given in the “Methods” section. In the gene expres-

sion space, the average correctness and consistency of the total RNA velocity of CSP-Baseline,

CSP-Splicing, and CSP-Switching are significantly better than that of Dynamo (Fig 6B and 6C

Left), while the spliced RNA velocity of CSP-Splicing has slightly lower consistency than that

of Dynamo (S4B and S4C Fig Left). In the RFP_GFP space, the average correctness of total

RNA velocity of all methods are significantly higher compared to that in the gene expression

space, and simpler methods tend to improve more. The average correctness of CSP-Baseline is

highest at this time (Fig 6B Right). However, the average correctness of the CSP-Splicing’s

spliced RNA velocity still perform slightly worse than Dynamo’s (S4B Fig Right). In contrast,

the total RNA velocity consistency of CSP-Baseline and CSP-Splicing is significantly better

than that of Dynamo (Fig 6C) and the spliced RNA velocity consistency of CSP-Splicing is also

significantly better than that of Dynamo (S4C Fig Right). Overall, the CSP-Baseline-based total

RNA velocity has the highest average correctness and consistency, and significantly outper-

forms Dynamo, while the CSP-Splicing-based spliced RNA velocity was close to Dynamo

quantitatively.

To demonstrate the significance of inferring time-resolved velocities with physical units, we

calculated the duration time of each cell cycle phase of the human RPE1-FUCCI system based

on the total RNA velocities (see “Methods” section, Fig 6D). Indeed, the human RPE1-FUCCI

system has a cell-cycle time of about 21 hours (about 6 hours for G1-S phase, 8 hours for S

phase, 4 hours for G2-M phase, 1 hour for M phase and 2 hours for M-G1 phase) [37].

To demonstrate the value of using gene-cell-wise parameters (except degradation rates), we

visualized the streamlines of total RNA velocity based on gene-cell-wise parameters and those

based only on gene-wise parameters (Fig 6E and S4D Fig). We observed that the streamlines of

CSP-Baseline and CSP-Switching in the S to G2-M phase are incorrectly reversed (Fig 6E and

S4D Fig Right), and the streamlines of CSP-Splicing are also less smooth and accurate than

those when gene-cell-wise parameters are used (S4D Fig Left).

We now illustrate the advantages of our method in the estimation of kinetic parameters and

the calculation of RNA velocity with two example genes: DCBLD2 and HIPK2. In gene

DCBLD2, the cells at M and M-G1 have the highest overall expression and the correct RNA

velocity should be negative (Fig 6F). However, Dynamo returned the positive velocity, which

is problematic (Fig 6G Right). In contrast, CSP-Baseline, CSP-Switching and CSP-Splicing all

returned negative velocities (Fig 6G Left and S4E Fig). We speculated one possible explanation

is that the expression of the gene DCBLD2 has not yet reached a steady state. Consistent results

were also observed from phase portraits of new-total RNA planes of DCBLD2 (Fig 6H and S4F

Fig). For gene HIPK2, similarly, cells in phase M and M-G1 have the highest expression overall

and the correct velocity should be negative (S4I Fig), but Dynamo and CSP-Baseline both

returned positive velocities while CSP-Switching got the correct results (S4G and S4H Fig).

We speculated one possible explanation for this is that the expression switch plays an impor-

tant role in HIPK2.

Finally we generated a simulated non-steady-state pulse data (S5 Fig). Both the CSP-Base-

line and Dynamo produced the correct streamlines (S5A Fig). However, the error between the

degradation rate estimated by CSP-Baseline and the true value was lower compared to
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Dynamo, and the error was further reduced for the well-fitted genes selected by goodness-of-

fit (S5B and S5C Fig).

Discussion

Storm utilizes three stochastic models for the dynamical description of new mRNAs and allows

the estimation of the RNA velocity for kinetics experiments and one-shot data with splicing

information without the need for the steady-state assumption. It can also generally handle

one-shot data without splicing information when the steady-state assumption is enforced. One

possible limitation of our model is that it does not fully utilize the total mRNA information in

kinetics experiments. According to the results of the chi-square independence test, the number

of total mRNA molecules of most genes obeys the same distribution. Noting that the old

mRNA molecules with a labeling duration of zero are the total mRNA molecules, we think

that it is a feasible direction to establish the stochastic dynamics of old mRNA and use the

Wasserstein distance in optimal transport approach [38, 39] to measure the differences

between discrete distributions. Therefore, the optimal transport modeling of old RNAs may be

integrated with Storm to obtain more robust RNA velocity inference. In addition, it is also

worth exploring stochastic models that consider switching of gene expression states, transcrip-

tion in the active state, splicing and spliced mRNA degradation simultaneously (i.e., integra-

tion of CSP-Splicing and CSP-Switching).

Some recent works, such as MultiVelo [7], Chromatin Velocity [40], and protaccel [8],

extend RNA velocity to multi-omics. It is expected that the combination of metabolic labeling

technology with other multi-omics measurements will bring new opportunities, which allows

for simpler parameter inference and more accurate results.

Although Storm was able to infer cell-specific transcription and splicing rates through the

post-processing steps, it still assumes that degradation rates are consistent across cells, which

may introduce a potential bias. In addition, Storm like many methods assumes that genes are

independent when inferring kinetic parameters (e.g. velocyto [1], scVelo [2], cellDancer [16],

and Dynamo [26]), which is biologically implausible. Deep neural networks are expected to

solve these problems by directly inferring cell-specific kinetic parameters and vector fields

end-to-end in situations where gene regulation is considered. For example, DeepVelo [10]

claims to achieve this goal for unspliced/spliced data. How to introduce deep neural networks

to scRNA-seq data with metabolic labeling information is a direction worth exploring, and

Storm may be able to provide some insights (e.g., loss function design) to achieve this goal.

Finally, Storm, like many other existing methods, first infers the RNA velocity in the high-

dimensional gene expression space, then selects an appropriate two-dimensional embedding,

and finally visualizes the RNA velocity by projecting it into the low-dimensional space. The

two-step process was criticized and may lead to specious results [6, 41–43]. Nevertheless, a

large number of efforts have been proposed to compensate for the shortcomings of the two-

step process of projecting gene-specific RNA velocities from high-dimensional space to low-

dimensional embeddings. For example, UnitVelo [9] supports the inference of a unified latent

time across the transcriptome, GraphDynamo [44] maps the cellular dynamics onto a discrete

graph representation, PAGA [45] generates a much simpler abstracted directed graph of parti-

tions by using RNA velocity in raw space, and LatentVelo [15], DeepCycle [46] and VeloCycle

[47] simultaneously infer the hidden space of gene expression and the dynamics on the hidden

space, where DeepCycle [46] and VeloCycle [47] are also specifically designed for cell cycle

processes. We tested Storm’s inference results using PAGA. The results show that Storm’s sto-

chastic modeling strategy is effective (S6 Fig). However, we would also like to mention that the

determination of which visualization is the best choice is not an easy problem. A thorough
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discussion about this issue deserves independent publications and detailed comparisons and

studies in the future, which is not the main concern of Storm. The key contribution of Storm

is the design of parameter inference methods for the scRNA-seq data with metabolic labeling

that does not rely on steady-state assumptions.

Conclusion

We present Storm for estimating absolute kinetic parameters and inferring the time-resolved

RNA velocity of metabolic labeling scRNA-seq data by incorporating the transient stochastic

dynamics of gene expressions. Storm establishes three stochastic models of new mRNA which

take into account both biological noise and cell-specific technical noise, and makes inference

to the gene-specific degradation rates and other gene-cell-specific parameters without relying

on the steady-state assumption in kinetics experiments and one-shot data with splicing infor-

mation. It can also handle one-shot data without splicing information when the steady-state

assumption is adopted. Numerical results show that Storm is able to accurately fit the kinetic

cell cycle dataset and many one-shot experimental datasets. In addition, our numerical experi-

ence suggests that CSP-Baseline outperforms the other two models when splicing dynamics is

not of interest, and CSP-Splicing is the valid choice if the data contains both labeling and splic-

ing information and splicing dynamics is of interest. However, further applications and perfor-

mance evaluations for more challenging datasets with temporal information are desired and it

will be studied in the future. We hope the developed method will become increasingly impor-

tant when more metabolic labeling data are available.

Methods

Derivation of three stochastic dynamical models

Here we developed three stochastic models for the dynamical description of new mRNAs:

Model 1 (CSP-Baseline): a stochastic dynamical model of new mRNA involving only meta-

bolic-labeling transcription and degradation; Model 2 (CSP-Splicing): a stochastic dynamical

model of new unspliced and spliced mRNA involving metabolic-labeling transcription, splic-

ing and spliced mRNA degradation; and Model 3 (CSP-Switching): a stochastic dynamical

model of new mRNA involving gene state switching, metabolic-labeling transcription and

degradation.

Model 1 (CSP-Baseline): Stochastic dynamical modeling of new mRNA. Following [21,

26], we made the following assumptions: (1) Genes are independent. (2) Both the transcription

rate α and the degradation rate of total mRNA γt are constants.

The chemical master equation (CME) for the new/labeled mRNA ~lðtÞ, corresponding to

the chemical reactions shown in the first row of Fig 1A, is given by

d~Pn

dt
¼ � ðaþ ngtÞ~Pn þ a

~Pn� 1 þ gtðnþ 1Þ~Pnþ1; ð5Þ

where ~PnðtÞ ¼ Probð~lðtÞ ¼ nÞ. The initial value of new mRNA count is zero, i.e., ~Pnð0Þ ¼ d0n,

where

dmn ¼
1; if m ¼ n

0; otherwise

(
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is the Kronecker’s delta function. The solution of Eq (5) is

~PnðtÞ ¼
aðtÞn

n!
e� aðtÞ; n 2 N; ð6Þ

where aðtÞ ¼ að1 � e� gt tÞ=gt. This means that~lðtÞ obeys the Poisson distribution with mean a
(t).

The above stochastic model only describes the true expression count of new mRNA~lðtÞ in

a cell with labeling duration t, but the measured sequencing data is different from this count

due to technical noise. Denote by l(t) the number of measured new mRNA molecules, and

assume that l(t) is associated with~lðtÞ through a dropout process, which we modeled as a bino-

mial distribution:

ProbðlðtÞ ¼ n j ~lðtÞ ¼ NÞ ¼ Cn
Np

nð1 � pÞN� n ≔ BnðN; pÞ; ð7Þ

where p is the capture probability of a single mRNA molecule. We further assume that the

total number of mRNA molecules across all genes in different cells are close, which was com-

monly adopted in the preprocessing step [1, 2, 26]. Denote by nj the total number of mRNA

molecules across all genes in cell j, i.e., nj = ∑i rij, where rij refers to the number of mRNA mole-

cules in gene i of cell j in the scRNA-seq measurements. This assumption implies that the cap-

ture probability of mRNA molecules in different cells is different, and pj/ nj. In our

computation, we took pj = nj/n0, where n0 = nmed is the median of nj. Note that pj here is what

is commonly referred to as the size factor, which is chosen to be consistent with the determin-

istic approach. Such choice might make pj> 1 for some j. However, this artifact can be easily

avoided by taking n0 larger, e.g., ~n0 ≔ maxj nj. This alternative choice does not affect the infer-

ence of the degradation and splicing rates except that the transcription rate α will be rescaled

by the multiple ~n0=nmed from Eq (9) and the form of a(t). In this case, the direction of the

inferred RNA velocity is not affected up to a common multiplicative constant, and the whole

approach is still valid.

We denoted the PMF of new mRNA sequencing result lj(t) of cell j with labeling duration t
by

Pn;jðtÞ ≔ ProbðljðtÞ ¼ nÞ: ð8Þ

Then

Pn;jðtÞ ¼
X1

N¼n

~PNðtÞBn N; pj

� �
¼
ðpjaðtÞÞ

n

n!
e� pjaðtÞ; ð9Þ

which means that lj(t) obeys the Poisson distribution with mean pja(t).
In summary, the former derivation shows that the number of new mRNA molecules in dif-

ferent cells in scRNA-seq measurements obeys Poisson distribution with cell-specific parame-

ters, and these parameters were proportional to pj, i.e., proportional to nj. We call this

distribution the cell-specific Poisson distribution.

Model 2 (CSP-Splicing): Stochastic dynamical modeling of new unspliced and spliced

mRNAs. Compared with CSP-Baseline, we distinguished whether an mRNA molecule is

spliced or not and incorporated the splicing process, which was shown in the second row of

Fig 1A. Again we assumed that the genes are independent. In addition, we further assumed

that the transcription rate α, splicing rate β, and spliced mRNA degradation rate γs are all

constants.
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The CME for the new/labeled unspliced and spliced mRNAs ð~ulðtÞ;~slðtÞÞ, corresponding to

the considered chemical reactions shown in the second row of Fig 1A, is given by

@t
~Pmn ¼ að~Pm� 1;n �

~PmnÞ þ b½ðmþ 1Þ~Pmþ1;n� 1 � m~Pmn�

þgs½ðnþ 1Þ~Pm;nþ1 � n~Pmn�;
ð10Þ

where ~PmnðtÞ ¼ Probðð~ulðtÞ;~slðtÞÞ ¼ ðm; nÞÞ. The initial distribution of new unspliced and

spliced mRNA is ~Pmnð0Þ ¼ dm0dn0. The solution of Eq (10) is

~PmnðtÞ ¼ bðtÞmcðtÞne� bðtÞ� cðtÞ=m!n!; ðm; nÞ 2 N2; ð11Þ

where

bðtÞ ¼ að1 � e� btÞ=b;

cðtÞ ¼

a

gs
ð1 � e� gstÞ þ

a

gs � b
ðe� gst � e� btÞ; b 6¼ gs;

a

b
ð1 � e� btÞ � ate� bt; b ¼ gs;

8
>>><

>>>:

ð12Þ

which means that ~ulðtÞ and ~slðtÞ obey independent Poisson distributions with mean b(t) and c
(t), respectively. We refer interested readers to [3] for derivation details.

Denote by (ul(t), sl(t)) the number of measured new unspliced and spliced mRNA mole-

cules in the scRNA-seq experiments with labeling duration t. By assuming that the dropout

processes for new unspliced and spliced mRNAs are independent and the capture probability

is independent of whether they are spliced or not, we modeled the dropout process for ~ulðtÞ
and ~slðtÞ as independent binomial distributions with the same parameter p. So we got

Prob ððulðtÞ; slðtÞÞ ¼ ðm; nÞ j ð~ulðtÞ;~slðtÞÞ ¼ ðM;NÞÞ

¼ Cm
Mp

mð1 � pÞM� mCn
Np

nð1 � pÞN� n ≔ BmðM; pÞBnðN; pÞ:
ð13Þ

For the same reason as CSP-Baseline, we take pj proportional to nj. And we took pj = nj/nmed in

the computation.

We denoted the joint PMF of new unspliced and spliced mRNA sequencing counts (ul,j(t),
sl,j(t)) of cell j with labeling duration t by

Pmn;jðtÞ ≔ Probððul;jðtÞ; sl;jðtÞÞ ¼ ðm; nÞÞ:

Then

Pmn;jðtÞ ¼
X1

M¼m

X1

N¼n

bðtÞMcðtÞN

M!N!
e� bðtÞ� cðtÞBMðm; pjÞBNðn; pjÞ

¼
X1

M¼m

bðtÞM

M!
e� bðtÞBMðm; pjÞ

X1

N¼n

cðtÞN

N!
e� cðtÞBNðn; pjÞ

¼
ðpjbðtÞÞ

m

m!
e� pjbðtÞ

ðpjcðtÞÞ
n

n!
e� pjcðtÞ;

ð14Þ

which means that ul,j(t) and sl,j(t) are independently Poisson distributed with mean pjb(t) and

pjc(t), respectively.

In summary, (ul(t), sl(t)) obeys independent cell-specific Poisson distribution.
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Model 3 (CSP-Switching): Stochastic dynamical modeling of new mRNA considering

switching. In CSP-Switching, we further considered the on/off gene state switching shown in

the third row of Fig 1A. We assumed that the genes are independent as well, and the transcrip-

tion rate α, mRNA degradation rate γt, the gene on-to-off rate koff and off-to-on rate kon are all

constants. Furthermore, following [32] we assumed that kon and koff are significantly smaller

than α and γt, which implies that the gene expression is either always on or always off during

the transcription/degradation period. From Eq (5), it is known that cells in the on state obey a

Poisson distribution with mean a(t), while cells in the off state do not express. Define poff =

koff/(kon + koff). Then~lðtÞ obeys the zero-inflated Poisson distribution

~P0ðtÞ ¼ ð1 � poffÞe� aðtÞ þ poff ;

~PnðtÞ ¼ ð1 � poffÞ
aðtÞn

n!
e� aðtÞ; n � 1:

ð15Þ

Similarly, by taking into account the technical noise in scRNA-seq experiments, the PMF of

lj(t) is

P0;jðtÞ ¼ ð1 � poffÞe
� pjaðtÞ þ poff ;

Pn;jðtÞ ¼ ð1 � poffÞ
ðpjaðtÞÞ

n

n!
e� pjaðtÞ; n � 1:

ð16Þ

In summary, different cells obey the ZIP distribution with different parameters as shown in

Eq (16), which we called cell-specific zero-inflated Poisson distribution.

Chi-square goodness-of-fit test for cell-specific distributions at a fixed time

We would construct an asymptotic χ2 statistic for the data with common distribution type but

sample-specific parameters. This goodness-of-fit test is to assess whether the null hypothesis

that the considered data, at a fixed labeling duration, obeys the proposed distribution can be

accepted.

We first divided the value range of the considered data into c classes. According to the

range that the samples fall in, we got n independent categorically distributed random samples

Xi 2 {1, 2, . . ., c} for i = 1, 2, . . ., n with sample dependent parameter pi, respectively. An equiv-

alent representation for the categorical variable Xi is to denote Xi = (Xij)j = 1, . . ., c 2 {e1, . . ., ec},
where ej = (δjk)k = 1, . . ., c is the indicator vector for j = 1, . . ., c. Correspondingly, the parameter

pi = (pi1, . . ., pic)T is a c-dimensional vector with non-negative elements and sums to one,

which is defined as

pij ≔ ProbðXij ¼ 1Þ ¼ 1 � ProbðXij ¼ 0Þ; j ¼ 1; . . . ; c: ð17Þ

This implies that Var(Xij) = pij(1 − pij) and CovðXij;XilÞ ¼ E½XijXil� � pjpl ¼ � pjpl for j 6¼ l.
Therefore, the covariance matrix of random vector Xi is

Si ¼

pi1ð1 � pi1Þ � pi1pi2 . . . � pi1pic

� pi1pi2 pi2ð1 � pi2Þ . . . � pi2pic

..

. ..
. . .

. ..
.

� pi1pic � pi2pic . . . picð1 � picÞ

0

B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
A

: ð18Þ
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For sample i, we defined the truncated random vector X∗
i ¼ ðXi1; . . . ;Xi;c� 1Þ

T
and truncated

vector p∗i ¼ ðpi1; . . . ; pi;c� 1Þ
T
, which is the first c − 1 components of Xi and pi, respectively. The

covariance matrix of X∗
i is the submatrix consisting of the upper-left (c − 1) × (c − 1) block of

Si, denoted by S∗
i , which can be written as

S∗
i ¼ diagðp∗i Þ � p∗i ðp

∗
i Þ

T
; ð19Þ

where diagðp∗i Þ is the diagonal matrix formed by the components of p∗i .
Define �X∗ ≔ ð

Pn
i¼1

X∗
i Þ=n, �p∗ ≔ ð

Pn
i¼1

p∗i Þ=n and �S∗ ≔ ð
Pn

i¼1
S∗

i Þ=n, and let

w2 ≔ nð�X∗ � �p∗ÞTð�S∗Þ
� 1
ð�X∗ � �p∗Þ: ð20Þ

Below we would show that χ2 is an asymptotic chi-square statistic with degrees of freedom c
− 1. First note that

E½�X∗� ¼ E
1

n

Xn

i¼1

X∗
i

" #

¼
1

n

Xn

i¼1

E½X∗
i � ¼

1

n

Xn

i¼1

p∗i ¼ �p∗; ð21Þ

then the covariance

D½�X∗� ¼ D
1

n

Xn

i¼1

X∗
i

" #

¼
1

n2

Xn

i¼1

D½X∗
i � ¼

1

n
1

n

Xn

i¼1

S∗
i

 !

¼
1

n
�S∗: ð22Þ

Let Yn ¼
ffiffiffi
n
p
ðS∗Þ

� 1=2
ð�X∗ � �p∗Þ. When n goes to infinity, Yn converges in distribution to the

normal distribution N(0, Ic−1) according to the central limit theorem for the independent sum

of random variables. Thus, w2 ¼ YT
n Yn converges in distribution to a chi-square distribution

with degrees of freedom c − 1.

In summary, we proposed a new asymptotic χ2 statistic for sample-specific distributions.

For a fixed labeling duration tfixed, a(tfixed), b(tfixed) and c(tfixed) are all constants, the proposed

χ2 statistics can be used to test whether the new mRNA sequencing data are consistent with

the CSP, ICSP and CSZIP distributions based on Models CSP-Baseline, CSP-Splicing and

CSP-Switching, respectively. In addition, since there are one, two and two parameters to be

inferred in CSP, ICSP and CSZIP distributions, respectively, the same number of degrees of

freedom should be subtracted. Following [28], we ensured that the expected count npj� 0.25

in each group when determining the group value ranges. Finally, we take p-value as 0.05 in the

computation.

Parameter inference in one-shot experiments with steady state assumption

In the one-shot experiments where we only observe new RNA lj(t) and total RNA rj(t) data for

one labeling duration t, we had to invoke the steady-state assumption for the total RNA.

When the dynamics of total RNA in CSP-Baseline is at steady state, i.e.,

0 ¼
d~Pr;n

dt
¼ � ðaþ ngtÞ~Pr;n þ a

~Pr;n� 1 þ gtðnþ 1Þ~Pr;nþ1;
ð23Þ

where ~Pr;n ≔ Probð~r ¼ nÞ is the invariant PMF of the true expression of total RNA. At this

point ~Pr;n is a Poisson distribution with α/γt as the mean and from [3] we know that at this

point the PMF of the true expression of old RNA ~Pu;n is a Poisson distribution with ða=gtÞe� gt t

as the mean. From Eq (9) we know that when technical noise is considered, the observed old
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RNA counts obey a similar CSP distribution

Pu;n;j ¼
ðpjða=gtÞe� gt tÞ

n

n!
e� pjða=gtÞe� gt t : ð24Þ

At this point, we obtained the distributions of the new RNA and old RNA observations so

that parameter inference can be performed using the MLE. Notice that the distribution of new

RNA counts is not independent of total RNA counts, whereas the distribution of new RNA

and old RNA counts is independent. We want to maximize the log-likelihood function

‘ða; gtÞ ¼
Xn

j¼1

log ðProbðr ¼ rj; l ¼ ljÞÞ

¼
Xn

j¼1

log ðProbðu ¼ rj � lj; l ¼ ljÞÞ

¼
Xn

j¼1

log ðPðpjaðtÞÞjljÞ þ log ðPðpjða=gtÞe
� gtÞjrj � ljÞ

ð25Þ

where PðlÞjn ≔ ProbðX ¼ nÞ ¼ e� lln
=n! is the probability of X = n for a Poisson-distributed

random variable X with mean λ. When @ℓ/@α = 0 and @ℓ/@γt = 0, the likelihood function is

maximized and it can be solved analytically

gt ¼ �
1

t
log 1 �

hlji
hrji

 !

; a ¼ gt
hrji
hpji

; ð26Þ

where h�imeans the population average defined by

h�i ¼ ð
XK

k¼1

Xnk

j¼1

ð�ÞÞ=ð
XK

k¼1

nkÞ: ð27Þ

Since here it is for the one-shot data set, K = 1. Note that Eq (26) is similar to the formula in

Dynamo [26] for estimating the parameters for one-shot data. The difference is that this for-

mula averages the raw counts, while the method in Dynamo averages the smoothed data.

Parameter inference in one-shot experiments without steady state

assumption

In one-shot dataset containing both labeling and splicing information, i.e. unspliced unlabeled

RNA uu,j, unspliced labeled RNA ul,j, spliced unlabeled RNA su,j and spliced labeled RNA sl,j
information is observed, we can make parametric inference without relying on the steady-state

assumption.

The method is divided into two steps; in the first step, we sum unspliced unlabeled RNA

and unspliced labeled RNA to obtain unspliced RNA, and unspliced labeled RNA and spliced

labeled RNA to obtain spliced RNA. Then, we use the dynamic model without relying on

steady state assumption in scVelo proposed by Bergen et al. [2] to infer the observation time of

cells tobs,j, switching time ts, degradation rate γs,scv, and splicing rate βscv. Despite the problem

of scale invariance, the absolute magnitude of these values is not physically meaningful, but

can still provide useful information for inferring the absolute magnitude of the parameters,

e.g., the value of βscv/γs,scv is meaningful, and in addition the cells with tobs,j less than ts are in

the on state.
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In the second step, we integrate the results from the first step and the labeling information

to determine the absolute size of the parameter. We define the notation

Son ≔ fjjtobs;j < tsg

to be the set of cells in the on state. In CSP-Splicing, the ulj and slj of cells in the on state obey

ICSP distribution

Pmn;jðtÞ ¼
ðpjbðtÞÞ

m

m!
e� pjbðtÞ

ðpjcðtÞÞ
n

n!
e� pjcðtÞ; 8 j 2 Son: ð28Þ

We want to maximize the log-likelihood function

‘ða; b; gsÞ ¼
X

j2Son

log ðPðpjðtÞbðtÞÞjul;jðtÞ � PðpjðtÞcðtÞÞjsl;jðtÞÞ; ð29Þ

which is equivalent to

P
j2Son

ul;j
P

j2Son
pj
¼ bðtÞ ¼

a

b
ð1 � e� btÞ;

P
j2Son

sl;j
P

j2Son
pj
¼ cðtÞ ¼

a

gs
ð1 � e� gstÞ þ

a

gs � b
ðe� gst � e� btÞ:

ð30Þ

This problem is not well-defined, but it is after adding the result

b

gs
¼
bscv
gs;scv

ð31Þ

from the first step. By solving the system of nonlinear equations consisting of equations (30)

and (31), we can obtain the absolute magnitudes of α, β, and γs.
Since modeling assumptions in scVelo are often violated, we selected only well-fitting genes

for use in the second stage and downstream analyses. We use R2 as the goodness-of-fit, which

is defined as

R2 ¼ 1 �

PN
j¼1
ððuj; sjÞ � ðuðtobs;jÞ; sðtobs;jÞÞÞ

2

PN
j¼1
ððuj; sjÞ � ð�u;�sÞÞ

2
: ð32Þ

Due to the dropout effect, cells with expression close to 0 are not used in the actual calculation

of R2. More specifically the rule is (uj, sj)< (max(uj)/5, max(sj)/5).

Parameter inference in kinetics experiments

In the kinetics experiments, we observed data lj(tk) (or (ul,j(tk), sl,j(tk))) for new mRNA (or new

unspliced and spliced mRNAs) with different labeling durations. We assumed that there are K
labeling durations tk for k = 1, 2, . . ., K, and the number of cells with labeling duration tk is nk.
We utilized the MLE to infer the unknown parameters in different models without relying on

steady-state assumptions.

In CSP-Baseline, we need to maximize the log-likelihood function

‘ða; gtÞ ¼
XK

k¼1

Xnk

j¼1

log ðPðpjðtkÞaðtkÞÞjljðtkÞÞ: ð33Þ
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It is equivalent to minimizing the following loss function

Lða; gtÞ ¼
XK

k¼1

Xnk

j¼1

� ljðtkÞ logðpjðtkÞaðtkÞÞ þ pjðtkÞaðtkÞ: ð34Þ

The optimum of the loss is achieved when the gradient equals 0. Utilizing the concrete expres-

sion of a(t) in CSP-Baseline, we got @aðtÞ=@a ¼ ð1 � e� gt tÞ=gt. Then @L(α, γt)/@α = 0 has a

closed form solution

aðgtÞ ¼
hljðtkÞi

hpjðtkÞ@aðtkÞ=@ai
: ð35Þ

Another component of the Euler-Lagrange equation @L/@γt = 0 has no closed form solution,

so we need to solve γt by numerical iterations. We took the initial value of γt as the solution

from Dynamo [26] under the steady-state assumption. Denote it as γt,0, and correspondingly,

we take the initial value of α as α0 = α(γt,0).

In CSP-Splicing, we need to maximize the log-likelihood function

‘ða; b; gsÞ ¼
XK

k¼1

Xnk

j¼1

log ðPðpjðtkÞbðtkÞÞjul;jðtkÞ � PðpjðtkÞcðtkÞÞjsl;jðtkÞÞ; ð36Þ

which is equivalent to minimizing the loss function

Lða; b; gsÞ ¼
XK

k¼1

Xnk

j¼1

ð � ul;jðtkÞ log ðpjðtkÞbðtkÞÞ þ pjðtkÞbðtkÞÞ

þð� sl;jðtkÞ log ðpjðtkÞcðtkÞÞ þ pjðtkÞcðtkÞÞ:

ð37Þ

Utilizing (12), we got @b(t)/@α = (1 − e−βt)/β and @cðtÞ=@a ¼ ð1 � e� gstÞ=gs þ ðe� gst �
e� btÞ=ðgs � bÞ when β 6¼ γs. The case for β = γs is similar. So @L(α, βt, γs)/@α = 0 has a closed

form solution

aðb; gsÞ ¼
hul;jðtkÞ þ sl;jðtkÞi

hpjðtkÞ
@b
@a
ðtkÞ þ

@c
@a
ðtkÞ

� �

i

:
ð38Þ

However @L/@β = 0 and @L/@γs = 0 have no closed form solution, and we need to solve these

equations by iterations. The choice of initial values is similar to the CSP-Baseline case. We

took the initial value of β and γs as the solution from Dynamo [26] under the steady-state

assumption, which we denoted as β0, γs,0. And then the initial value of α is taken as α0 = α(β0,

γs,0).

In CSP-Switching, we need to maximize the log-likelihood function

‘ðpoffÞ ¼
XK

k¼1

Xnk

j¼1

IfljðtkÞ¼0g logðZIPðpjaðtkÞ; poffÞj0Þ

þIfljðtkÞ>0g logðZIPðpjaðtkÞ; poffÞjljðtkÞÞ;

ð39Þ

where ZIP(λ, poff)|n≔ Prob(X = n) is the probability of X = n for a ZIP-distributed random
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variable X with parameters λ and poff. It is equivalent to minimizing the loss function

Lða; gt; poffÞ ¼
XK

k¼1

Xnk

j¼1

� logðZIPðpjaðtkÞ; poffÞj0Þ�

IfljðtkÞ>0gðlogð1 � poffÞ þ ljðtkÞ logðpjðtkÞaðtkÞÞ � pjðtkÞaðtkÞÞ:

ð40Þ

Similar as before, we chose the initial value of γt, denoted as γt,0, based on the steady state

assumption, and chose the moment estimator

poff ;0 ¼ 1 �

hljðtkÞi
2

�

pjðtkÞ
@a
@a
ðtkÞ

� �2�

hpjðtkÞ
@a
@a
ðtkÞi

2
ðhljðtkÞ

2
i � hljðtkÞiÞ

ð41Þ

and

a0 ¼
hljðtkÞi

ð1 � poff;0ÞhpjðtkÞ
@a
@a
ðtkÞi

ð42Þ

as the initial values of poff and α.

According to the biological meaning of the parameters, we added the constraints 0< α<
10α0, 0< β< 10β0, 0< γt< 10γt,0, 0< γs< 10γs,0 and 0< poff < 1, and we called the SLSQP

optimizer in SciPy to solve the above optimization problem.

Goodness-of-fit test for the distribution evolution in time

In ordinary least squares (OLS) linear regression, people often use

R2 ≔ 1 �
RSS
TSS
¼ 1 �

PN
i¼1
ðyi � ŷiÞ

2

PN
i¼1
ðyi � �yiÞ

2
ð43Þ

to define the goodness of fit, where yi is the sample observation, ŷi is the model prediction, and

�yi is the sample mean. For the generalized linear model (GLM), the R2 can be defined using

the deviance D and null deviance D0 [29],

R2
D ≔ 1 �

D
D0

¼ 1 �
� 2ð‘ðb̂Þ � ‘sÞ

� 2ð‘0 � ‘sÞ
¼ 1 �

‘ðb̂Þ � ‘s
‘0 � ‘s

; ð44Þ

where ‘ðb̂Þ, ℓ0 and ℓs denotes the log-likelihood function of the model with parameter b̂, the

null model (that is, fitted with only the intercept), and the saturated model (that is, fitted with

one parameter per sample), respectively. R2
D can be seen as a generalization of R2, which is

equal to R2 when the model is a least squares linear regression [29]. Finally, to overcome the

disadvantage of adding more parameters without reducing R2
D (similar to R2), we used adjusted

R2
D (denoted as �R2

D) as the goodness of fit of different models, which is defined as

�R2
D ≔ 1 �

D=dD

D0=dD0

¼ 1 �
ð‘ðb̂Þ � ‘sÞ=dD

ð‘0 � ‘sÞ=dD0

; ð45Þ

where dD and dD0
are the degrees of freedom of D and D0, respectively. To more intuitively

explain the usefulness of R2
D, we named it goodness of fit of model in the mian text instead of

using adjusted deviance R2.
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In CSP-Baseline, ℓs has the closed form

‘s ¼
XK

k¼1

Xnk

j¼1

ljðtkÞ log ðPðljðtkÞÞjljðtkÞÞ: ð46Þ

To calculate ℓ0, we need to maximize the log-likelihood function

‘ða0Þ ¼
XK

k¼1

Xnk

j¼1

log ðPðpjðtkÞa0ÞjljðtkÞÞ; ð47Þ

where a0 is the intercept. The problem has a closed form solution a0 = hlj(tk)i/hpj(tk)i. In addi-

tion, dD = N − 2 and dD0
¼ N � 1, where N is the number of cells.

In CSP-Splicing, ℓs has the closed form

‘s ¼
XK

k¼1

Xnk

j¼1

log ðPðul;jðtkÞÞjul;jðtkÞÞ þ log ðPðsl;jðtkÞÞjsl;jðtkÞÞ ð48Þ

To calculate ℓ0, we need to maximize the log-likelihood function

‘ðb0; c0Þ ¼ log ðPðpjðtkÞb0Þjul;jðtkÞÞ þ log ðPðpjðtkÞc0ÞÞjsl;jðtkÞÞ ð49Þ

where b0 and c0 are intercepts and have closed form solutions b0 = hul,j(tk)i/hpj(tk)i and c0 =

hsl,j(tk)i/hpj(tk)i, respectively. In addition, dD = 2N − 3 and dD0
¼ 2N � 2.

In CSP-Switching, to calculate ℓs, we need to maximize the log-likelihood function

‘ða; gt; poffÞ ¼
XK

k¼1

Xnk

j¼1

IfljðtkÞ¼0g log ðZIPð0; poffÞj0Þ

þIfljðtkÞ>0g log ðZIPðljðtkÞ; poffÞjljðtkÞÞ

¼
XK

k¼1

Xnk

j¼1

IfljðtkÞ>0g log ðZIPðljðtkÞ; poffÞjljðtkÞÞ

ð50Þ

When poff is equal to zero, Eq (50) is maximized, and the closed form solution of ℓs is

‘s ¼
XK

k¼1

Xnk

j¼1

IfljðtkÞ>0gðljðtkÞ logðljðtkÞÞ � ljðtkÞ � logðliðtkÞ!ÞÞ: ð51Þ

To calculate ℓ0, we need to maximize the log-likelihood function

‘ða0; poffÞ ¼
XK

k¼1

Xnk

j¼1

IfljðtkÞ¼0g logðZIPðpja0; poffÞj0Þ

þIfljðtkÞ>0g logðZIPðpja0; poffÞjljðtkÞÞ:

ð52Þ

Similar to solving Eq (40), poff,0 and a0 were initialized using moment estimators with addi-

tional constraints 0< poff < 1 and 0< a< 10a0. We then called the SLSQP optimizer in SciPy

to solve the problem. In addition, dD = N − 2 and dD0
¼ N � 1. Before projecting high-dimen-

sional RNA velocities to low dimensions for visualization, we first pick genes with higher

goodness-of-fit. The default setting is that the top 40% of genes are picked, and this percentage

can be specified by the user.
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Post-processing for cell-specific parameters

In our cell-specific modeling of gene expression, we only assumed that γt (in CSP-Baseline and

CSP-Switching) and γs (in CSP-Splicing) are constants over cells and are inferred based on the

corresponding stochastic models, while the other parameters are cell-specific and continuously

dependent on gene expressions. This relaxed assumption implies that only the degradation

rate is common to all cells, and only cells with similar gene expressions have similar other

parameters (due to continuous dependence). To realize this assumption, we first constructed

the k-nearest neighbor (kNN) graph of cells by a data preprocessing. The cell-specific parame-

ter inference was performed by applying the inference to the kNN graph for each cell with

local constant parameter assumption and already inferred degradation rates. In other deter-

ministic model-based methods to infer RNA velocity (either unspliced/spliced-based or new/

total-based) [1, 2, 26], they also construct similar kNN graph and perform kNN smoothing on

the data based on this graph. This post-processing step of ours can be seen as the generaliza-

tion of the usual kNN smoothing to our stochastic setting, as we model discrete counts. The

inference details for our three models were shown as below.

In CSP-Baseline, we have

liðtkÞ � PoissonðpiajðtkÞÞ; 8i 2 N j;tk
; ð53Þ

where N j;tk
denotes the set of top k (default is 30) cells that have the most similar gene expres-

sions as the jth cell with labeling duration tk (including itself) and ajðtkÞ ¼ ajðtkÞð1 � e� gt tkÞ=gt.
Assuming that γt has been inferred, we can obtain a local estimator

P
i2N j;tk

liðtkÞ
P

i2N j;tk
piðtkÞ

¼ ajðtkÞ ¼
ajðtkÞ
gt
ð1 � e� gt tkÞ ð54Þ

by using the MLE. Define l̂ jðtkÞ ¼ ð
P

i2N j;tk
liðtkÞÞ=ð

P
i2N j;tk

piðtkÞÞ. Then the cell-specific tran-

scription rate αj(tk) has a closed form solution

ajðtkÞ ¼ l̂ jðtkÞgt=ð1 � e� gt tkÞ: ð55Þ

In CSP-Splicing, we have

ðul;iðtkÞ; sl;iðtkÞÞ � independent PoissonðpibjðtkÞ; picjðtkÞÞ; 8i 2 N j;tk
: ð56Þ

Similarly, assuming γs has been inferred, and defining the local estimators

ûl;jðtkÞ ¼

P
i2N j;tk

ul;iðtkÞ
P

i2N j;tk
piðtkÞ

; ŝ l;jðtkÞ ¼

P
i2N j;tk

sl;iðtkÞ
P

i2N j;tk
piðtkÞ

; ð57Þ

we have

ûl;jðtkÞ ¼ bjðtkÞ ¼
ajðtkÞ
bjðtkÞ

ð1 � e� bjðtkÞtkÞ;

ŝ l;jðtkÞ ¼ cjðtkÞ ¼
ajðtkÞ
gs
ð1 � e� gstkÞ þ

ajðtkÞ
gs � bjðtkÞ

ðe� gstk � e� bjðtkÞtkÞ;
ð58Þ
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which is a nonlinear system. We have

ŝ l;jðtkÞ
ûl;jðtkÞ

¼
bjðtkÞð1 � e� gstkÞ
gsð1 � e� bjðtkÞtkÞ

þ
bjðtkÞðe� gstk � e� bjðtkÞtkÞ
ðgs � bjðtkÞÞð1 � e� bjðtkÞtkÞ

: ð59Þ

To solve βj(tk), we set its initial value as previously inferred β by global constant assumption.

We then call the foot function in SciPy to solve the nonlinear equation (59) to get βj(tk). The

αj(tk) has a closed form solution

ajðtkÞ ¼ ûl;jðtkÞbjðtkÞ=ð1 � e� bjðtkÞtkÞ: ð60Þ

In summary, in CSP-Splicing, we can infer the cell-specific transcription rate αj(tk) and splic-

ing rate βj(tk).
In CSP-Switching, we have

liðtkÞ � ZIPðpiajðtkÞ; poff;jðtkÞÞ; 8i 2 N j;tk
: ð61Þ

When computing RNA velocity, we only need to know αj(tk)(1 − poff,j(tk)) as a whole, and not

their respective values (see next subsection). To simplify the computation, we used the

moment estimation instead of MLE, and got

l̂ jðtkÞ ¼ ð1 � poff;jÞajðtkÞ ¼
ð1 � poff ;jðtkÞÞajðtkÞ

gt
ð1 � e� gt tkÞ: ð62Þ

Similarly, assuming γt has been inferred, αj(tk)(1 − poff,j(tk)) has a closed form solution

ajðtkÞð1 � poff;jðtkÞÞ ¼ l̂ jðtkÞgt=ð1 � e� gt tkÞ: ð63Þ

Reduction from stochastic to deterministic models for RNA velocity

We used discrete counts data in the proposed parameter inference and goodness-of-fit calcula-

tion via stochastic models. However, when we need to compute and visualize the RNA veloc-

ity, we should take the reduction from stochastic to deterministic models to get the mean

velocity. Below we would show the reduction process and reveal the connection between the

stochastic and their corresponding deterministic models.

In CSP-Baseline, let us denote the mean value of~lðtÞ by h~lðtÞi, which is defined as

h~lðtÞi ¼
P1

n¼1
n~PnðtÞ. From Eq (5) we can obtain the deterministic equation after suitable

algebraic manipulations

dh~lðtÞi
dt

¼
X1

n¼1

n
d~PnðtÞ
dt

¼
X1

n¼1

nð� ðaþ ngtÞ~Pn þ a
~Pn� 1 þ gtðnþ 1Þ~Pnþ1Þ

¼ a � gth
~lðtÞi:

ð64Þ

Similarly, the mean value of total RNA ~rðtÞ satisfies the equation

dh~rðtÞi
dt

¼ a � gth~rðtÞi: ð65Þ

PLOS COMPUTATIONAL BIOLOGY Storm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012606 November 18, 2024 30 / 38

https://doi.org/10.1371/journal.pcbi.1012606


Since the initial value of~lðtÞ is zero, we got

h~lðtÞi ¼ aðtÞ ¼
a

gt
ð1 � e� gt tÞ: ð66Þ

In CSP-Splicing, the marginal PMFs of ~ulðtÞ and ~slðtÞ are

~Pm;�ðtÞ ≔ Probð~ulðtÞ ¼ mÞ ¼
X1

n¼0

~Pm;nðtÞ;

~P �;nðtÞ ≔ Probð~slðtÞ ¼ nÞ ¼
X1

m¼0

~Pm;nðtÞ;
ð67Þ

respectively. The mean values of ~ulðtÞ and ~slðtÞ have the form h~ulðtÞi ¼
P1

m¼1
m~Pm;�ðtÞ and

h~slðtÞi ¼
P1

n¼1
n~P �;nðtÞ. From the CME (10), we can obtain

dh~ulðtÞi
dt

¼
X1

m¼1

m@t
~Pm;�ðtÞ ¼

X1

m¼1

m
X1

n¼0

@t
~Pm;nðtÞ

¼
X1

m¼1

m
X1

n¼0

að~Pm� 1;n �
~PmnÞ þ bððmþ 1Þ~Pmþ1;n� 1 � m~PmnÞ

þgsððnþ 1Þ~Pm;nþ1 � n~PmnÞ

¼ a � bh~ulðtÞi;

ð68Þ

and

dh~slðtÞi
dt

¼
X1

n¼1

n@t
~P �;nðtÞ ¼

X1

n¼1

n
X1

m¼0

@t
~Pm;nðtÞ

¼
X1

n¼1

n
X1

m¼0

að~Pm� 1;n �
~PmnÞ þ bððmþ 1Þ~Pmþ1;n� 1 � m~PmnÞ

þgsððnþ 1Þ~Pm;nþ1 � n~PmnÞ

¼ bh~ulðtÞi � gsh~slðtÞi:

ð69Þ

Similarly, we can derive the equations for the mean values of total unspliced and spliced

mRNA ð~uðtÞ;~sðtÞÞ:

dh~uðtÞi
dt

¼ a � bh~uðtÞi;

dh~sðtÞi
dt

¼ bh~uðtÞi � gsh~sðtÞi:
ð70Þ

Since the initial value of ð~ulðtÞ;~slðtÞÞ is (0, 0), we got

h~ulðtÞi ¼ bðtÞ ¼
a

b
ð1 � e� btÞ ð71Þ
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and

h~slðtÞi ¼ cðtÞ ¼

a

gs
ð1 � e� gstÞ þ

a

gs � b
ðe� gst � e� btÞ; b 6¼ gs;

a

b
ð1 � e� btÞ � ate� bt; b ¼ gs:

8
>>><

>>>:

ð72Þ

Similar to CSP-Baseline, in CSP-Switching, dh~lðtÞi=dt and dh~rðtÞi=dt satisfy the equations

dh~lðtÞi
dt

¼ ð1 � poffÞa � gth~lðtÞi;

dh~rðtÞi
dt

¼ ð1 � poffÞa � gth~rðtÞi:
ð73Þ

Since the initial value of~lðtÞ is zero, we got

h~lðtÞi ¼
ð1 � poffÞa

gt
ð1 � e� gt tÞ: ð74Þ

Computation of RNA velocity

To ease the notation, we denoted the new mRNA after data preprocessing by�lðtÞ, defined as

�ljðtkÞ ¼
1

jN j;tk
j

X

i2N j;tk

liðtkÞ
piðtkÞ

;

which is different from the true expression~lðtÞ, the discrete counts data l(t), and the notation

l̂ðtÞ in the post-processing subsection. We would also use the notation �uðtÞ, �sðtÞ and �rðtÞ with

similar definition.

In CSP-Baseline, only the total RNA velocity can be obtained due to the lack of the splicing

stage. From Eq (65), we have

vtotal;rjðtkÞ ¼ ajðtkÞ � gt�rjðtkÞ; ð75Þ

where �rjðtkÞ is the number of total mRNA molecules of the jth cell labeled with length tk after

data preprocessing.

In CSP-Splicing, we add the two equations in Eq (70) to obtain

dh~rðtÞi
dt

¼
dh~uðtÞi

dt
þ

dh~sðtÞi
dt

¼ a � gsh~sðtÞi; ð76Þ

and thus get the equation for total RNA velocity

vtotal;rjðtkÞ ¼ ajðtkÞ � gs�sjðtkÞ: ð77Þ

In addition, in CSP-Splicing, we can also calculate the spliced RNA velocity by the following

equation

vspliced;sjðtkÞ ¼ bjðtkÞ�ujðtkÞ � gs�sjðtkÞ: ð78Þ
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Similar to CSP-Baseline, the total RNA velocity in CSP-Switching can be obtained by the

equation

vtotal;rjðtkÞ ¼ ð1 � poff;jðtkÞÞajðtkÞ � gt�rjðtkÞ: ð79Þ

Relationship between γt and γs and its implications

The difference between Eqs (65) and (76) implies the difference between the total mRNA deg-

radation rate γt and spliced mRNA degradation rate γs. After suitable manipulations, we had

the relation between γt and γs as below

gs
gt
¼
h~rðtÞi
h~sðtÞi

: ð80Þ

Therefore, we naturally got a method to infer γt when γs is known. Specifically, we first per-

formed a zero-intercept linear regression

�rjðtkÞ ¼ k�sjðtkÞ ð81Þ

to get the slope k. Then we computed γt by γt = γs/k. Therefore, we can also infer γt and com-

pute the total RNA velocity by Eq (75) in CSP-Splicing.

We would also like to point out that CSP-Baseline and CSP-Splicing are incompatible upon

assuming that γt and γs are both constants. These two assumptions usually do not hold simul-

taneously. Otherwise, from Eq (80) we knew that h~sðtÞi=h~rðtÞi is a constant, which is equiva-

lent to that h~uðtÞi=h~rðtÞi is a constant, i.e., gtð1 � e� btÞ=ðbð1 � e� gt tÞÞ is a constant. But this is

only true when β and γt are equal.

Robust analysis of the parameter inference in the CSP-Baseline

When γtt is small, 1 � e� gt t � gtt holds, then

lðtÞ ¼
að1 � e� gt tÞ

gt
� at; ð82Þ

which implies that from the mean perspective the nonlinear fitting of α and γt degenerated

into a linear fitting of α at this point. For a more precise analysis, let @aðtÞ=@a ¼ ð1 � e� gt tÞ=gt,
we have @ℓ(α, γt)/@α = 0 is equivalent to

aðgtÞ ¼

PK
k¼1

Pnk
j¼1

ljðtkÞ
PK

k¼1

Pnk
j¼1

pjðtkÞ@aðtkÞ=@a
: ð83Þ

But when 1 � e� gt t � gtt holds, @a(t)/@α� t, then we have

a �

PK
k¼1

Pnk
j¼1

ljðtkÞ
PK

k¼1

Pnk
j¼1

pjðtkÞtk
ð84Þ

is a constant, which we denoted by αcons. In addition, to quantitatively measure the robustness

of inference on γt, since the optimal parameter is always located where the gradient is zero, we

defined the l1-norm of the derivative of the loss function with respect to γt restricted to @ℓ/@α
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= 0 (i.e. black line),
�
�
�
�
�

d‘
dgt
j@‘
@a
¼0ðgtÞ

�
�
�
�
�
l1

¼

Z gt;max

0

�
�
�
�
�

d‘
dgt

�
�
�
�
�
dgt; ð85Þ

as a measure of robustness. Since the half-life of the total mRNA molecules is usually not less

than half an hour, we took γt,max = 1.5.

Definition of correctness and consistency of velocity

The correctness of cell velocities is defined as follows: Consider the cell i with position xi and

velocity vi. Define its one-step extrapolated position as xi + vi. We say that vi is correct (correct-

ness index = 1) if the cell j closest to the extrapolated position xi + vi ranks after i in the tempo-

ral ordering. Otherwise the correctness does not hold and we set the correctness index to be 0.

Thus the average correctness refers to the percentage of correct velocities. Because the bound-

aries of the cell cycle being estimated are not clear and sharp, we did not use the RNA velocity

benchmark metric cross-boundary direction (CBDir) proposed by Qiao et al. [12] and widely

used for comparison of RNA velocity methods.

The consistency means the extent to which the velocity of one cell is consistent with the

velocities of its neighboring cells, and we use the average correlation coefficient proposed in

scVelo [2] to measure this consistency.

Calculation of the duration of each cell cycle phase

After the total RNA velocities are obtained, we can evaluate the time of each phase of a cell

cycle based on them. Specifically, we first pick k cells x0
i (i = 1, 2, . . ., k) whose relative positions

are closest to 0 as a cell group, calculate their average expression �x0 and velocity �v0 as the initial

expression x0 and velocity v0, and extrapolate the state of the cell group with a short time step

dt, that is, x1 = x0 + v0dt. We then search for another k cells x1
i (i = 1, 2, . . ., k) which are closest

to the extrapolated state x1, set the majority of the phase of these k cells to the phase of x1, and

set their average velocity �v1 as v1 for the second cell group. Next, the extrapolation and local k-

cells group identification step can be repeated until a given threshold of the relative position is

exceeded. In the actual calculation, we set k = 300, dt = 0.01, and the threshold of the relative

position to be 88% quantile of all relative positions. The above approach for processing the cell

groups instead of cells themselves is to reduce the data noise by local averaging.

Generation of simulation data

In this paper we generate two simulation datasets, one of which is bifurcated one-shot dataset

following VeloSim’s [31] flow, and the other is a non-steady-state kinetics dataset following

scVelo’s [2] model.

The bifurcated one-shot dataset is generated as described below. First we set the maximum

observation time to T and the labeling time tl. The observation times for half of the cells were

generated randomly with a uniform distribution [tl, T/2], and the other half of the cells were

divided into two equal parts, which were generated randomly with a uniform distribution [T/

2, T]. We then followed SymSim [30] and VeloSim [31] to generate cell extrinsic variability

factor(EVF)s and gene effect vector and used theme to generate the cell-gene-wise transcrip-

tion rate α. Splicing rate β and degradation rate γs are gene-wise and were generated from uni-

form distributions of [0, 0.5] and [0, 5], respectively. After all kinetic parameters were

generated, we used the Gillespie algorithm to generate raw uu, ul, su and sl RNA counts data.
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We did not consider technical noise when generating the simulated data and therefore set the

size factor of all cells to 1.

The non-steady-state kinetics dataset is based on the model in scVelo [2], but ignores the

splicing process. First we set the maximum observation time T and the K labeling times t1, t2
� � � tK. The observation times for cells are randomly generated with a uniform distribution [tK,

T], and the labeling times of the cells were randomly selected with equal probability from t1 to

tK. Transcription rate α and degradation rate γt, both of which are gene-wise, were randomly

generated with a uniform distribution [0.5, 1] and [0, 0.5], respectively. To generate non-

steady-state data, we set the switching time ts = 0.5ρ/γt, where ρ is a random number generated

with a uniform distribution [0, 1]. Finally similarly we use Gillespie algorithm to generate raw

new and total RNA counts data and do not consider technical noise.

Supporting information

S1 Fig. Stochastic model combined with steady-state assumptions for one-shot experi-

ments, realated to Fig 2. Storm in this figure refers to the inference strategy of CSP-Baseline

model combined with the steady state assumption. A. Cell quiver plot in the PCA space of the

scSLAM-seq dataset [17]. B. Degradation rates γt estimated with steady-based method in

Storm compared to that of the Dynamo method in the scSLAM-seq dataset [17]. C. Same as B,

but for the datasets from the sci-fate [19]. D. Same as B, but for the datasets from the Per-

turbSci-Kinetics [22].

(PNG)

S2 Fig. Storm analyzes one-shot data with both splicing and labeling without steady-state

assumption, realated to Fig 3. A. Streamline projected in the PCA space plots of one-shot

bifurcation simulation data of cellDancer. B. Streamline plot in the UMAP space of the murine

intestinal organoid system dataset from scEU-seq [21] of cellDancer. C. Heat map of absolute

error between estimated and true gene-cell-wise transcription rates α of one-shot bifurcation

simulation data of Dynamo.

(PNG)

S3 Fig. GO (gene ontology) pathway enrichment results of genes with high α and poff (top

50%) and low γt, β, α and poff (bottom 50%) in well-fit genes (top 40% of goodness of fit),

related to Fig 5 in main text.

(PNG)

S4 Fig. RNA velocity analysis of the cell cycle dataset, related to Fig 6. The inference strategy

involved in this figure is for kinetics/pulse data. A. Comparison of spliced RNA velocity

streamline visualizations between CSP-Splicing method and Dynamo. B. Comparison of the

average correctness of spliced velocity in gene expression space RFP_GFP space. The p-values

are given by the one-sided Wilcoxon test. C. Similar to B, but for velocity consistency. D. Total

RNA velocity streamlines calculated using gene-wise parameters (instead of using gene-cell-

wise parameters except for the degradation rate). Left: ICSP. Right: CSZIP E. Comparison of

total RNA velocity in DCBLD2 between CSP-Splicing and CSP-Switching. F. Phase portraits

of new-total RNA planes of DCBLD2 of CSP-Splicing and CSP-Switching. Quivers correspond

to the total (x-component) or new (y-component) RNA velocity calculated by the different

methods. G. Similar to E, but for gene HIPK2 of three stochastic methods and Dynamo. H.

Similar to F, but for gene HIPK2 of three stochastic methods. I. The smoothed expression pat-

tern of HIPK2 across cells.

(PNG)
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S5 Fig. RNA velocity analysis of the simulated pulse dataset, related to Fig 6. Storm in this

figure refers to the inference strategy of CSP-Baseline model for pulse data. A. Comparison of

total RNA velocity streamline visualizations between Storm and Dynamo in simulated pulse

dataset. B. Comparison of the estimated degradation rate with the true degradation rate in

simulated pulse data. C. Distribution plot of the difference between the estimated degradation

rate and the true value, including Storm, well-fitted genes in Storm, Dynamo and well-fitted

genes in Dynamo.

(PNG)

S6 Fig. PAGA analysis of different datasets and different methods. A. Comparison of PAGA

velocity graph on the neuronal activity under KCl polarization datasets from scNT-seq. Left:

Storm; Right: Dynamo. B. Comparison of PAGA velocity graph on the cellcycle dataset from

scEU-seq. From left to right, from top to bottom, Storm’s CSP-Baseline stochastic model without

steady-state assumption, CSP-Baseline stochastic model with steady-state assumption, Dynamo’s

deterministic model with steady-state assumption and random velocity. Type annotations were

derived from an equal number division of cells into 8 classes based on the relative positions of cells

provided by the original scEU-seq study, and the first and last classes were combined into 1 class.

(PNG)
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